WEDGE HOLOGRAPHY AS GENERALIZATION OF ADS/CFT

Based on [arXiv:2007.06800] collaboration with Ibrahim Akal, Tadashi Takayanagi, Zixia Wei

YITP, Kyoto University Yuya Kusuki

Introduction

AdS/CFT correspondence [Maldanena]

very useful tool to understand quantum gravity

• BH thermality means breakdown of unitality

[Fitzpatrick, Kaplan, Walters, etc.]

 Contradiction between Hawking calculation and Page curve [Almheiri, Mahajan, Maldacena, Zhao, etc.]

Obviously, developments of AdS/CFT is important!

[Akal, YK, Takayanagi, Wei]

Motivation

- New laboratory
- New construction of CFT_1
- Construction is more definite than double holography
- Joining gravity from AdS_{d+1} and CFT_{d-1} \Rightarrow radiation setup

Summary 2

Motivation

- New laboratory
- dS braneworld
- Universe creation setup

[Akal, YK, Takayanagi, Wei]

No asymptotic boundary ⇒ No CFT dual?

Contents

- Introduction
- Basics of AdS/BCFT
 - Quick lesson of BCFT
 - Gravity dual
- Wedge holography
 - Codimension two holography
 - Another wedge holography
- Summary

Boundary breaks conformal symmetry...

Conformal Symmetry of BCFT is part of conformal symmetry preserving the bdy. position.

Boundary CFT

Definite definition of $BCFT_2$ is given by [Cardy].

Boundary CFT

Difference II: Correlation function

Kinematic part of **CFT** correlator is completely fixed by the conformal Ward id.

In fact, the **same** conformal Ward id. can be also applied to **BCFT** via **mirror method**.

Therefore, we can explicitly calculate **BCFT correlators** like **CFT**, even though it does not have full conformal sym..

Mirror method:

$$\langle \phi(z) \rangle_{bdy} = \langle \phi(z)\phi(z^*) \rangle \propto \frac{1}{|z-z^*|^{2h\phi}}$$
with $z = x + iy$.
The second eq. comes from standard conformal
Ward id.

BCFT has extra contents, boundary State OPE coefficient among bulk states and boundary states

With all of them, we can explicitly calculate any correlators

Comment:

If dim. of irr. rep. is finite (i.e., RCFT), $|B\rangle$ can be completely classified,

$$|B\rangle = \frac{S_{i_B j}}{\sqrt{S_{0j}}}|j\rangle$$

Otherwise (including holographic CFT), no classification.

Interesting point:

• **g-theorem** [Friedan, Konechny]

 S_{bdy} decreases under the RG flow like central charge \Rightarrow consistent with DoF measure interpretation

Gravity dual of BCFT [Fujita, Tonni, Takayanagi] boundary **ETW** brane AdS_{d+1} **BCFT**_d AcSwin FW prane BCFT ∂ (ETW) = bdy. of CFT Induced metric: $h_{\mu\nu} = g_{\mu\nu} - n_{\mu}n_{\nu}$, Extrinsic curvature: $K_{\mu\nu} = h_{\mu}^{\ \rho} h_{\nu}^{\ \lambda} \nabla_{\rho} n_{\lambda}$ Gravity action: $I = -\frac{1}{16\pi G_N} \int_N \sqrt{g} (R - 2\Lambda) - \frac{1}{8\pi G_N} \int_O \sqrt{h} (K - T)$ **Neumann b.c.** is imposed on the brane (Einstein eq. of brane). $K_{ab} - Kh_{ab} = -Th_{ab}$ 13/72

Interesting point of AdS/BCFT:

Boundary provides **dynamical** spacetime on ETW (see also [Randull-Sandrum]) This is the reason why resent progresses about Page curve utilize AdS/BCFT

Gravity dual of BCFT

Simple example:

Poincare patch:

$$ds^{2} = R^{2} \left(\frac{dz^{2} - dt^{2} + dx^{2} + d\vec{w}^{2}}{z^{2}} \right)$$

Let us consider a BCFT on a UHP (x < 0). It is useful to use the coordinate $\left(x = \frac{y}{\cosh \frac{\rho}{R}}, z = \frac{y}{\cosh \frac{\rho}{R}}\right)$,

$$ds^{2} = d\rho^{2} + R^{2} \cosh^{2}\frac{\rho}{R}\left(\frac{dy^{2} - dt^{2} + d\vec{w}^{2}}{y^{2}}\right)$$

The bdy. position $\rho = \rho(y)$ is fixed by the Neumann b.c.

BCFT

 $K_{ab} - Kh_{ab} = -Th_{ab}$

X

Gravity dual of BCFT

$$K_{ab} - Kh_{ab} = -Th_{ab}$$

A solution to the Neumann b.c. is

$$\rho = \rho_* \qquad s.t. \quad T = \frac{d-1}{R} \tanh \frac{\rho_*}{R}$$

$$\rho_* \qquad s.t. \quad T = \frac{\alpha - 1}{R} \tanh \frac{\rho_*}{R}$$

appropriate map from this UHP, the gravity
of a disk partition function (= **boundary entropy**)

BCFT

By an dual c is obtained.

 S_{bdv} becomes large as the size of the space is increased (i.e. ρ_* is increased) \Rightarrow boundary becomes **classical** (explained later)

[Ryu, Takayanagi]

EE can probe how much information about \overline{A} can be extracted from subregion A in CFT.

 $S_A = \operatorname{tr} \rho_A \log \rho_A, \qquad \rho_A = \operatorname{tr}_{\bar{A}} \rho$

Gravity dual of EE is

 \Rightarrow Gravity calculation is easy

CFT calculation is also not so hard (replica trick).

CFT calculation is also not so hard (replica trick).

Usefulness

CFT_d

 AdS_{d+1}

А

- Both gravity and CFT calculation are *easy*
 - \Rightarrow For this reason, we will use this to justify our new holography.
- Useful to probe global feature
 - Which is part of gravity dual to subregion A in CFT? Sub-region/sub-region duality (see [Suzuki, YK, Takayanagi, Umemoto])
 - c-theorem [Myers-Sinha]

 \Rightarrow How is this generalized to AdS/BCFT?

Difference

- RT surface can **end on ETW** brane (which satisfies homologous cond. from string perspective.)
- DoF of boundary (boundary entropy) also contributes to S_A .

Simple example:

This entanglement entropy can be completely reproduced by **CFT** calculation (replica trick and **mirror method**)

Setup: $AdS_d \& CFT_d$ are glued along the (asymptotic) boundary

This AdS_d is dynamical. Light can go through asymptotic boundary. We can discuss the Page curve in this setup.

Setup:

 $AdS_d \& CFT_d$ are glued along the (asymptotic) boundary

AdS/CFT correspondence: $AdS_d = CFT_{d-1}$ This CFT_{d-1} can be thought of as boundary object of CFT_d

Subregion/Subregion duality implies

Distinguishable from subregion A

Not distinguishable from subregion A

Distinguishable from subregion A Not distinguishable from subregion A Fidelity (one of distinguishabilities)

$$F(\rho, \rho') = \operatorname{tr}\left(\sqrt{\sqrt{\rho}\rho'\sqrt{\rho}}\right)$$

F = 1 if and only if $\rho = \rho'$

can be used to show this subregion/subregion duality.

α ι Not distinguishable from subregion A

Dual AdS

Distinguishable from subregion A

 $\rho = \text{black excitation,} \\ \rho' = \frac{\text{blue excitation,}}{F(\rho, \rho') \neq 1}$

 $\rho = \text{black excitation,} \\ \rho' = \frac{\text{blue excitation,}}{F(\rho, \rho') = 1}$

See more details in [Suzuki, YK, Takayanagi, Umemoto]

Contents

- Introduction
- Basics of AdS/BCFT
 - Quick lesson of BCFT
 - Gravity dual
- Wedge holography
 - Codimension two holography
 - Another wedge holography
- Summary

[Akal, YK, Takayanagi, Wei]

Original Holography

d + 1 dimensional AdS = d dimensional CFT

Generalization

Our Wedge Holography

d + 1 dimensional AdS = d - 1 dimensional CFT

[Akal, YK, Takayanagi, Wei]

Original Holography

d + 1 dimensional AdS = d dimensional CFT

[Akal, YK, Takayanagi, Wei]

Our Wedge Holography

d + 1 dimensional AdS = d - 1 dimensional CFT

Wedge Holography

 AdS_{d+1}

Definition of wedge:

CFT_{d-1}

$$ds_{AdS_{d+1}}^2 = d\rho^2 + R^2 \cosh^2 \frac{\rho}{R} \left(\frac{dy^2 - dt^2 + d\overline{w}^2}{y^2} \right)$$
$$= d\rho^2 + \cosh^2 \frac{\rho}{R} \frac{ds_{AdS_d}^2}{ds_{AdS_d}^2}$$

Restricted to wedge subspace $-\rho_* \le \rho \le \rho_*$ \Rightarrow asymptotic boundary is d-1 dimensional theory

Our proposal: This is CFT_{d-1}

Derivation from AdS/BCFT

Definition: Limit of BCFT (very clear!)

Derivation from AdS/BCFT

Definition: Limit of BCFT (very clear!) ⇒But is this really CFT?

Three Justifications:

- Brane world holography + AdS/CFT (at least large ρ_*)
- Boundary of $BCFT_d$ can be thought of as CFT_{d-1} , because OPE of boundary state also satisfies axiom of CFT. In this sense, our CFT_{d-1} can be interpreted as two boundaries interacting with each other through bulk.
- From now on, we see matching of gravity calculation and CFT calculation for some physical quantities.

One check of holography principle can be done by seeing **free** energy.

The on-shell action of AdS_{d+1} (without boundaries) has the following form (see [Henningson, Skendteries]),

$$I = \# \frac{1}{\epsilon^{d}} + \# \frac{1}{\epsilon^{d-2}} + \dots + \# \frac{1}{\epsilon^{2}} - \# \log \epsilon + O(1) \quad \text{(if } d = odd)$$
$$I = \# \frac{1}{\epsilon^{d}} + \# \frac{1}{\epsilon^{d-2}} + \dots + \# \frac{1}{\epsilon} + O(1) \quad \text{(if } d = even)$$

In fact, CFT_d has the same form.

 $I_{AdS_{d+1}} = I_{CFT_d}$ This is one consistency check of the AdS_{d+1}/CFT_d correspondence.

Let us consider AdS_{d+1}/CFT_{d-1} .

Of course, without the wedge, we can conclude

Lades_{def-1} 7[±] Loren_{d-1}

Therefore, the contribution from the **wedge** should have some non-trivial effects. We will see this.

For simplicity, let us focus on AdS_4/CFT_2 .

We know

$$I_{CFT_2} = \# \frac{1}{\epsilon^2} + \frac{c}{6} \chi(\Sigma) \log \epsilon + O(1)$$

Let's calculate the gravity action of wedged AdS_4 directly!

Metric of Euclidian AdS_{d+1} :

$$ds^{2} = d\rho^{2} + R^{2} \cosh^{2} \frac{\rho}{R} \left(d\eta^{2} + \sinh^{2} \eta \, d\Omega_{d-1}^{2} \right)$$
$$= dr^{2} + R^{2} \sinh^{2} \frac{r}{R} \left(d\theta^{2} + \cos^{2} \theta \, d\Omega_{d-1}^{2} \right)$$

On-shell action gravity action on this wedge geometry,

$$I = -\frac{1}{16\pi G_N} \int_W \sqrt{g} (R - 2\Lambda) - \frac{1}{8\pi G_N} \int_{Q_1 \cup Q_2} \sqrt{h} (K - T) - \frac{1}{8\pi G_N} \int_{\Sigma} \sqrt{h} K$$

For the wedged AdS_4 , we have $I_{WAdS_4} = -\frac{R^2}{2G_N\epsilon^2}\sinh\frac{\rho_*}{R} + \frac{R^2}{G_N}\sinh\frac{\rho_*}{R}\log\epsilon + O(1)$

$$I_{WAdS_4} = -\frac{R^2}{2G_N\epsilon^2}\sinh\frac{\rho_*}{R} + \frac{R^2}{G_N}\sinh\frac{\rho_*}{R}\log\epsilon + O(1)$$

The form for CFT_2 is

$$I_{CFT_2} = \# \frac{1}{\epsilon^2} + \frac{c}{6} \chi(\Sigma) \log \epsilon + O(1)$$

The ϵ dependence perfectly matches !!

The central charge (i.e. degrees of freedom) of the wedged AdS_4 is ($\chi(S^2) = 2$)

Next, we will check this result in an independent way.

Entanglement entropy

Entanglement entropy can be evaluated from both **CFT** and **gravity** side. Therefore, it is very useful to check our new holographic principle.

For simplicity, let us focus on AdS_4/CFT_2 and consider a single interval A with size *l*.

In this case, the entanglement entropy in CFT_2 is known as

$$S_A = \frac{c}{3} \log \frac{l}{\epsilon}$$

Let us compare this with gravity calculation.

well-known HEE formula

our HEE formula

The holographic entanglement entropy for our holography is naturally defined by recalling its definition,

Holographic EE

This formula in 4d case leads to

$$S_A = \frac{R^2}{G_N} \sinh \frac{\rho_*}{R} \log \frac{l}{\epsilon}$$

This form matches with the CFT_2 result.

We can extract the **central charge** from this result as

$$c = \frac{3R^2}{G_N} \sinh \frac{\rho_*}{R}$$

This is completely same as the previous result!

Note: we can see this matching for more general cases (higher dimension and intervals).

Holographic EE

More consistency check: HEE for a round disk with radius *l*

• AdS_5/CFT_3

$$S_A = \left(\frac{\pi R^3}{G_N^{(5)}} \sinh \frac{\rho_*}{R}\right) \frac{l}{\epsilon} - \frac{\pi R^3}{G_N^{(5)}} \left(\frac{\rho_*}{2R} + \frac{1}{4} \sinh \frac{2\rho_*}{R}\right) + O\left(\frac{\epsilon}{l}\right)$$

• AdS_6/CFT_4

$$S_A = \left(\frac{\pi R^4}{G_N^{(6)}} \sinh \frac{\rho_*}{R}\right) \left(\frac{l}{\epsilon}\right)^2 - \frac{\pi R^4}{G_N^{(6)}} \left(\frac{\sinh \frac{3\rho_*}{R}}{12} + \frac{3}{4} \sinh \frac{\rho_*}{R}\right) \log \frac{l}{\epsilon} + O(1)$$

This scaling profile of HEE agrees with CFT_{d-1} results

Holographic EE

Double interval case: We found **transition** like the usual HEE.

Implication: CFT dual to Wedge geometry is similar to holographic CFT (i.e. gapped CFT)

But in this work, we do not identify any specific features of the dual CFT in a definite way, except for central charge. This is very interesting future direction!

Comments

• CFT_{d-1} dual to AdS_{d+1}

- $\bullet \ c = \frac{3R^2}{G_N} \sinh \frac{\rho_*}{R}$
- Large DoF of AdS_{d+1} leads to infinite tower of primary operators, which are interpreted as KK modes in brane world.

\Rightarrow NOT holographic CFT

• Zero size limit seems to be singular, but from gravity perspective, quantity in CFT_{d-1} are well-defined as wee saw.

Comments

• New construction of CFT_1 ?

One construction of CFT_1 is known as the dual of JT gravity. But more precisely this is not conformal but near conformal. From our AdS_3/CFT_1 , the dual theory is just a part of AdS_3 , therefore, the CFT_1 is really conformal field theory.

New setup

50/72

Comments

New setup

Joining gravity

is consistent with the central charge derived from EE.

• In general, if ρ_* is large, effective *d*-dimensional gravity is well-described (like R-S model).

Let us consider more general case. **BTZ** is simplest one other than Poincare AdS.

Metric of BTZ:

$$ds^{2} = -(r^{2} - r_{0}^{2})dt^{2} + R^{2}\frac{dr^{2}}{r^{2} - r_{0}^{2}} + r^{2}dx^{2}$$

Coordinate transformation $\frac{r_0}{r_0}(x+t) \sqrt{r_0^2}$

$$x' \pm x' = \pm e^{\frac{r_0}{R}(x \pm t)} \sqrt{1 - \frac{r_0^2}{r^2}}, \ z = \frac{r_0}{r} e^{\frac{r_0}{R}x}$$

Poincare:

$$ds^{2} = R^{2} \left(\frac{dz^{2} - dt'^{2} + dx'^{2}}{z^{2}} \right)$$

Gravity action is consistent with anomaly of CFT_1 . DoF of CFT_1 is equal to DoF of two AdS branes.

No asymptotic boundary \Rightarrow No CFT dual ?

Contents

- Introduction
- Basics of AdS/BCFT
 - Quick lesson of BCFT
 - Gravity dual
- Wedge holography
 - Codimension two holography
 - Another wedge holography
- Summary

Profile of **bubble** brane is $(z - \alpha)^2 + x^2 + t^2 = \beta^2$ with $|\alpha| > |\beta|$

Bubble AdS had not been considered in AdS/BCFT context. Here, we give the CFT dual of this bubble AdS.

Imaginary radius is problematic, but in gravity picture, this analytic continuation is not so problematic. We formally define **imaginary BCFT**.

EE in BCFT

Let us recall that mirror method can completely fix 1pt.correlator.

1-pt. correlator in BCFT is

$$\langle \phi(x) \rangle_{disk} \simeq \left(\phi(x) \phi\left(\frac{r^2}{x}\right) \right)$$

up to conformal prefactor.

 $\Re W$

SW

 $\boldsymbol{\chi}$

mirror image

 $\boldsymbol{\chi}$

EE in BCFT

Let us recall that mirror method can completely fix 1pt.correlator.

1-pt. correlator in BCFT is

$$\langle \phi(x) \rangle_{disk} = g_B \left(\frac{r}{|w|^2 - r^2} \right)^{2h\phi}$$

 $\Re W$

Sw

X

r

mirror image

 χ

EE in BCFT

For example, EE in the right setup can be evaluated by

$$\langle \sigma_n(\tau+ia) \rangle_{disk} = g_B \left(\frac{r}{\tau^2 + a^2 - r^2} \right)^{2h_{\sigma_n}}$$

where
$$\sigma_n$$
 is twist op. with $h_{\sigma_n} = \frac{c}{24} \left(n - \frac{1}{n} \right)$
After analytic continuation $\tau \to it$,

$$S_A(t) = \lim_{n \to 1} \frac{1}{1-n} \log \langle \sigma_n(\tau + ia) \rangle_{disk}$$
$$= \frac{c}{6} \log \frac{a^2 - t^2 - r^2}{\epsilon r} + S_{bdy}$$

where $S_{bdy} = \log g_B$ is boundary entropy

Lorentzian ver. of Euclidean disk

62/72

EE in Im-BCFT

Let us consider imaginary BCFT in physical setup

$\sigma_n = \text{hole with radius } \epsilon$ **EE in Im-BCFT**

$$g_B = \langle \sigma_n | B \rangle = \frac{Z_n^{\beta, \beta}}{\left(Z_1^{\beta, B} \right)^n}$$

RR

where β is boundary state related to σ_n (which can be absorbed in regularization ϵ)

$$Z_{n}^{\beta,B} = \langle \beta | e^{-\frac{1}{2\pi n} \log \frac{R}{\epsilon} H} | B \rangle \xrightarrow[\epsilon \to 0]{} e^{-\frac{1}{2\pi n} \log \frac{R}{\epsilon} E_{0}} \langle \beta | 0 \rangle \langle 0 | B \rangle$$

R is formal radius $R=1 \; (\rightarrow i \; \text{later}).$ As a result,

 $S_{A}(t) = \frac{c}{6} \log \frac{a^{2} - t^{2} + r^{2}}{cr} + \frac{S_{bdy}}{cr}$

$$\langle \sigma_n | B \rangle = \left(\frac{R}{\epsilon}\right)^{-2h_{\sigma_n}} (\langle \beta | 0 \rangle \langle 0 | B \rangle)^{1-n}$$

Analytic continuation $(R \rightarrow iR)$ leads to

important point

 $\log \frac{R}{c}$

 $Z_n^{\beta,B}$

$$\langle \sigma_n | Im - B \rangle = i^{-2h_{\sigma_n}} \langle \sigma_n | B \rangle$$
 cancel imaginary part

EE in Im-BCFT

CFT calculation is non-trivial but gravity calculation is trivial (just a geodesic in a cut AdS).

 \Rightarrow **Consistency check** from gravity calculation is possible.

$$S_{A} = \lim_{n \to 1} \frac{1}{1 - n} \log \langle \sigma_{n}(a, t) \overline{\sigma_{n}}(b, t) \rangle_{Im-disk}$$
$$= \begin{cases} \frac{c}{6} \log \frac{a^{2} + r^{2} - t^{2}}{r\epsilon} + \frac{c}{6} \log \frac{b^{2} + r^{2} - t^{2}}{r\epsilon} + 2g_{B} &: \text{disconnect} \\ \frac{c}{3} \log \frac{b - a}{\epsilon} &: \text{connected} \end{cases}$$

CFT calculation based on our prescription completely matches with the gravity calculation!

 ${\mathcal X}$

 $\boldsymbol{\Omega}$

t

ted

Lorentzian Im-BCFT

 ${\mathcal X}$

Analytic continuation to Lorentzian signature provides time-like boundary in CFT.

dual

This setup is interesting for two reasons:

o universe creation setup

t

• **dS** braneworld (as mentioned before) by CFT description as boundary state

AdS

Contents

- Introduction
- Basics of AdS/BCFT
 - Quick lesson of BCFT
 - Gravity dual
- Wedge holography
 - Codimension two holography
 - Another wedge holography

• Summary

Summary 1

Wedge Holography $AdS_{d+1} = CFT_{d-1}$

CFT_{d-1}

Justifications

• Brane world picture:

Brane world holography + AdS/CFT (at large ρ_*)

• BCFT picture:

CFTs on two boundaries with bulk interaction

 Matching of physical quantities explicit calculation of DoF and EE from both sides 70/72

Summary 1

Wedge Holography $AdS_{d+1} = CFT_{d-1}$

CFT_{d-1}

Future direction

- Employing this new laboratory
- Identifying universal properies of CFT_{d-1}
- Joining gravity from AdS_{d+1} and CFT_{d-1} \Rightarrow more general double holography setup
- More justification (e.g. realization via string theory)

dS brane/Imaginary BCFT duality

Future direction

- Employing this new laboratory
- More understanding of dS braneworld holography
- Universe creation setup
- More justification