WEDGE HOLOGRAPHY AS GENERALIZATION OF ADS/CFT

YITP, Kyoto University

Ibrahim Akal, Tadashi Takayanagi, Zixia Wei

Introduction

AdS/CFT correspondence [Maldanena]
very useful tool to understand quantum gravity

- BH thermality means breakdown of unitality
[Fitzpatrick, Kaplan, Walters, etc.]
- Contradiction between Hawking calculation and Page curve [Almheiri, Mahajan, Maldacena, Zhao, etc.]

Obviously, developments of AdS/CFT is imporłant!

Summary(1)

[Akal, YK, Takayanagi, Wei]

Generalization

Original Holography $\mathrm{AdS}_{\mathrm{d}+1}=\mathrm{CFT}_{a}$

Our Wedge Holography $\operatorname{AdS}_{d+1}=\mathrm{CFT}_{a-1}$

Motivation

- New laboratory
- New construction of CFT_{1}
- Construction is more definite than double holography
- Joining gravity from AdS_{d+1} and CFT_{d-1}
\Rightarrow radiation setup

Summary(2)

[Akal, YK, Takayanagi, Wei]

No asymptotic boundary \Rightarrow No CFT dual?

Motivation

- New laboratory
- dS braneworld
- Universe creation setup

Confents

o Introduction

- Basics of AdS/BCFT
- Quick lesson of BCFT
- Gravity dual
o Wedge holography
- Codimension two holography
- Another wedge holography
o Summary

Boundary CFT

Boundary breaks conformal symmetry...

Conformal Symmetry of BCFT is part of conformal symmetry preserving the bdy. position.

SO(2.d-1)

Bdy. Condition is

No energy/momentum flux across the bdy.

Boundary CFT

Definite definition of BCFT_{2} is given by [Cardy].

Difference I: Symmełry

Symmetry of CFT is

$$
\text { Vir } \times \overline{V i r}
$$

On the other hand, bdy. condition of BCFT,

shows the dependency of Vir and $\overline{\mathrm{Vir}}$.
Instead, symmetry of BCFT is given by
Vir

Boundary CFT

Difference II: Correlation function
Kinematic part of CFT correlator is completely fixed by the conformal Ward id.

In fact, the same conformal Ward id. can be also applied to BCFT via mirror method.

Therefore, we can explicitly calculate BCFT correlałors like CFT, even though it does not have full conformal sym..

Boundary CFT

Mirror

Mirror method:

$$
\langle\phi(z)\rangle_{b d y}=\left\langle\phi(z) \phi\left(z^{*}\right)\right\rangle \propto \frac{1}{\left|z-z^{*}\right|^{2 h_{\phi}}}
$$

with $z=x+i y$.
The second eq. comes from standard conformal Ward id.

Boundary CFT

Difference III: Basic conłenłs

primary state
CFT is specified by central charge OPE coefficient
BCFT has extra contents, houndary state OPE coefficient among bulk states and boundary słałes

With all of them, we can explicitly calculate any correlators

Boundary CFT

Definition of boundary state

$$
\left(L_{n} L_{-n}\right)|B|=0
$$

Comment:
If dim. of irr. rep. is finite (i.e., RCFT), $|B\rangle$ can be completely classified,

$$
|B\rangle=\frac{S_{i_{B} j}}{\sqrt{S_{0 j}}}|j\rangle
$$

Otherwise (including holographic CFT), no classification.

Boundary entropy

DoF of boundary is measured by boundary entropy.

Conformal map

Disk partition function

$$
S_{b d y}=\log g_{B}, \quad g_{B}=\langle 0 \mid B\rangle \simeq Z_{d i s k}
$$

Interesting point:

- g-†heorem [Friedan, Konechny]
$S_{b d y}$ decreases under the RG flow like central charge \Rightarrow consistent with DoF measure interpretation

Gravity dual of BCFT

BCFT_{d}

BCFT

AdS with ETW brane
 $\partial($ ETW $)=$ bdy of CFT

Induced metric: $h_{\mu \nu}=g_{\mu \nu}-n_{\mu} n_{\nu}$,
Extrinsic curvature: $K_{\mu \nu}=h_{\mu}{ }^{\rho} h_{\nu}{ }^{\lambda} \nabla_{\rho} n_{\lambda}$
Gravity action:

$$
I=-\frac{1}{16 \pi G_{N}} \int_{N} \sqrt{g}(R-2 \Lambda)-\frac{1}{8 \pi G_{N}} \int_{Q} \sqrt{h}(K-T)
$$

Neumann b.c. is imposed on the brane (Einstein eq. of brane).

$$
K_{a b}-K h_{a b}=-T h_{a b}
$$

Gravity dual of BCFT

BCF_{d}

 BCFT$$
\begin{aligned}
& \text { AdS with ETW brane } \\
& \text { g(ETW) = bdy. of cft }
\end{aligned}
$$

Interesting point of AdS/BCFT:

Boundary provides dynamical spacetime on ETW (see also [Randull-Sandrum])
This is the reason why resent progresses about Page curve utilize AdS/BCFT

Graviły dual of BCFT

Simple example:
Poincare patch:

$$
d s^{2}=R^{2}\left(\frac{d z^{2}-d t^{2}+d x^{2}+d \vec{w}^{2}}{z^{2}}\right)
$$

BCFT

Let us consider a BCFT on a UHP $(x<0)$.
It is useful to use the coordinate $\left(x=\frac{y}{\cosh \frac{\rho}{R}}, z=\frac{y}{\cosh \frac{\rho}{R}}\right)$,

$$
d s^{2}=d \rho^{2}+R^{2} \cosh ^{2} \frac{\rho}{R}\left(\frac{d y^{2}-d t^{2}+d \vec{w}^{2}}{y^{2}}\right)
$$

The bdy. position $\rho=\rho(y)$ is fixed by the Neumann b.c.

$$
K_{a b}-K h_{a b}=-T h_{a b}
$$

Gravity dual of BCFT

$$
K_{a b}-K h_{a b}=-T h_{a b}
$$

Dual AdS
A solution to the Neumann b.c. is

$$
\rho=\rho_{*} \quad \text { s.t. } T=\frac{d-1}{R} \tanh \frac{\rho_{*}}{R}
$$

BCFT

By an appropriate map from this UHP, the gravity dual of a disk partition function (= boundary entropy) is obtained.

$$
S_{\text {bay }}=-I_{\text {disk }}=\frac{\rho_{i}}{4 G_{N}}
$$

$S_{b d y}$ becomes large as the size of the space is increased (i.e. ρ_{*} is increased)
\Rightarrow boundary becomes classical (explained later)

Ryu-Takayanagi formula

EE can probe how much information about a can be extracted from subregion in CFT.

$$
S_{A}=\operatorname{tr} \rho_{A} \log \rho_{A}, \quad \rho_{A}=\operatorname{tr}_{A} \rho
$$

Gravity dual of EE is

$$
S_{A}=\min _{\Gamma_{A}}\left(\frac{\operatorname{Area}\left(\Gamma_{A}\right)}{4 G_{N}}\right)
$$

$\mathrm{AdS}_{\mathrm{d}+1}$

\Rightarrow Gravity calculation is easy

Ryu-Takayanagi formula

CFT calculation is also not so hard (replica trick).

$$
S_{A}=\operatorname{tr} \rho_{A} \log \rho_{A}=\lim _{n \rightarrow 1} \frac{1}{1-n} \log \operatorname{tr} \rho_{A}^{n}, \quad \rho_{A}=\operatorname{tr}_{A} \rho
$$

Ryu-Takayanagi formula

CFT calculation is also not so hard (replica trick).

$$
S_{A}=\operatorname{tr} \rho_{A} \log \rho_{A}=\lim _{n \rightarrow 1} \frac{1}{1-n} \log \operatorname{tr} \rho_{A}^{n}, \quad \rho_{A}=\operatorname{tr}_{A} \rho
$$

$$
\operatorname{tr} \rho_{A}^{n}=\left\langle\sigma_{n}(l) \bar{\sigma}_{n}(0)\right\rangle=\frac{1}{l^{2 h_{\sigma_{n}}}}
$$

where $h_{\sigma_{n}}=\frac{c}{24}\left(n-\frac{1}{n}\right)$. The second eq. is just Ward id.
As a result,

$$
S_{A}=\frac{c}{3} \log \frac{l}{\epsilon}
$$

Ryu-Takayanagi formula

$$
S_{A}=\min _{\Gamma_{A}}\left(\frac{\operatorname{Area}\left(\Gamma_{A}\right)}{4 G_{N}}\right)
$$

Usefulness

- Both gravity and CFT calculation are easy
\Rightarrow For this reason, we will use this to justify our new holography.
- Useful to probe global feature
- Which is part of gravity dual to subregion A in CFT? Sub-region/sub-region duality (see [Suzuki, YK, Takayanagi, Umemoto])
- c-theorem [Myers-Sinha]
\Rightarrow How is this generalized to AdS/BCFT?

Ryu-Takayanagi formula

Difference

- RT surface can end on ETW brane (which satisfies homologous cond. from string perspective.)
- DoF of boundary (boundary entropy) also contributes to S_{A}.

Ryu-Takayanagi formula

Simple example:

$$
S_{A}=\frac{c}{6} \log \frac{l}{\epsilon}+\frac{c}{6} \log \frac{l+d}{\epsilon}+2 \log g_{B}
$$

$$
S_{A}=\frac{c}{3} \log \frac{d}{\epsilon}
$$

This entanglement entropy can be completely reproduced by CFT calculation (replica trick and mirror mełhod)

Developments from AdS/BCFT

Asymptotic boundary

Setup:
$\mathrm{AdS}_{d} \& \mathrm{CFT}_{d}$ are glued along the (asymptotic) boundary
This AdS_{d} is dynamical.
Light can go through asymptotic boundary.
We can discuss the Page curve in this setup.

Developments from AdS/BCFT

 CFT_{d}

Setup:
$\mathrm{AdS}_{d} \& \mathrm{CFT}_{d}$ are glued along the (asymptotic) boundary
AdS/CFT correspondence:
$\mathrm{AdS}_{d}=\mathrm{CFT}_{d-1}$
This CFT_{d-1} can be thought of as boundary object of CFT_{d}

Developments from AdS/BCFT

These three
pictures are same

Developments from AdS/BCFT

Braneworld holography

By utilizing AdS/BCFT,

We can find the contribution from Island (effective quantum contribution), which reproduce the Page curve
double holography
[Almheri, Mahajan, Maldacena, Zhao]

Developments from AdS/BCFT

Subregion/Subregion duality implies

EE for bath \rightarrow information of gravity (island)

It means

Distinguishable from subregion

Not distinguishable from subregion

Developments from AdS/BCFT

Distinguishable from subregion

Not distinguishable from subregion

Fideliły (one of distinguishabilities)

can be used to show this subregion/subregion duality.

Developments from AdS/BCFT

Distinguishable from subregion

Not distinguishable from subregion

$$
\begin{gathered}
\rho=\text { black excitation, } \\
\rho^{\prime}=\text { blue excitation, } \\
F\left(\rho, \rho^{\prime}\right)=1
\end{gathered}
$$

See more details in [Suzuki, YK, Takayanagi, Umemoto]

Contents

- Introduction
- Basics of AdS/BCFT
- Quick lesson of BCFT
- Gravity dual
- Wedge holography
- Codimension two holography
- Another wedge holography
- Summary

Developments from AdS/BCFT

[Akal, YK, Takayanagi, Wei]

Original Holography

$d+1$ dimensional AdS = d dimensional CFT

Generalization

Our Wedge Holography

$d+1$ dimensional AdS = d.

Developments from AdS/BCFT

[Akal, YK, Takayanagi, Wei]

Original Holography

$d+1$ dimensional AdS = d dimensional CFT

Developments from AdS/BCFT

[Akal, YK, Takayanagi, Wei]

Our Wedge Holography
 $d+1$ dimensional AdS $=d-1$ dimensional CFT

Cutting space by wedge

Wedge Holography

Definition of wedge:

$$
d s_{A d S}^{2}=d \rho_{d+1}^{2}+R^{2} \cosh ^{2} \frac{\rho}{R}\left(\frac{d y^{2}-d t^{2}+d \vec{w}^{2}}{y^{2}}\right)
$$

Restricted to wedge subspace $-\rho_{*} \leq \rho \leq \rho_{*}$
\Rightarrow asymptotic boundary is $d-1$ dimensional
theory
Our proposal: This is CFT_{d-1}

Naive derivation?

AdS/CFT

Naive derivation?

Unforłunałely, noł well-undersłood so, here we do not use this.

AdS/CFT

Naive derivation?

AdS/BCFT

Instead, we employ AdS/BCFT, clear understanding, some justificałions

Derivation from AdS/BCFT

Definition: Limit of BCFT (very clear!)

Derivation from AdS/BCFT

Definition: Limit of BCFT (very clear!)

```
Hut is this really CFT?
```

Three Justifications:

- Brane world holography + AdS/CFT (at least large ρ_{*})
- Boundary of BCFT_{d} can be thought of as CFT_{d-1}, because OPE of boundary state also satisfies axiom of CFT. In this sense, our CFT_{d-1} can be interpreted as two boundaries interacting with each other through bulk.
- From now on, we see małching of graviły calculation and CFT calculation for some physical quantities.

Free energy on Sphere

One check of holography principle can be done by seeing free energy.
The on-shell action of $\mathrm{AdS}_{\mathrm{d}+1}$ (without boundaries) has the following form (see [Henningson, Skendteries]),

$$
\begin{array}{ll}
I=\# \frac{1}{\epsilon^{d}}+\# \frac{1}{\epsilon^{d-2}}+\cdots+\# \frac{1}{\epsilon^{2}}-\# \log \epsilon+O(1) & \text { (if } d=o d d) \\
I=\# \frac{1}{\epsilon^{d}}+\# \frac{1}{\epsilon^{d-2}}+\cdots+\# \frac{1}{\epsilon}+O(1) & \text { (if } d=\text { even })
\end{array}
$$

In fact, $\mathrm{CFT}_{\mathrm{d}}$ has the same form.

This is one consistency check of the $\mathrm{AdS}_{\mathrm{d}+1} / \mathrm{CFT}_{\mathrm{d}}$ correspondence.

Free energy on Sphere

Let us consider $\mathrm{AdS}_{\mathrm{d}+1} / \mathrm{CFT}_{\mathrm{d}-1}$.
Of course, without the wedge, we can conclude

Therefore, the contribution from the wedge should have some nontrivial effects. We will see this.
For simplicity, let us focus on $\mathrm{AdS}_{4} / \mathrm{CFT}_{2}$.
We know

$$
I_{C F T_{2}}=\# \frac{1}{\epsilon^{2}}+\frac{c}{6} \chi(\Sigma) \log \epsilon+O(1)
$$

Leł's calculałe łhe graviły acłion of wedged AdS_{4} direcłly!

Free energy on Sphere

Metric of Euclidian AdS $_{\mathrm{d}+1}$:

$$
\begin{aligned}
d s^{2} & =d \rho^{2}+R^{2} \cosh ^{2} \frac{\rho}{R}\left(d \eta^{2}+\sinh ^{2} \eta d \Omega_{d-1}^{2}\right) \\
& =d r^{2}+R^{2} \sinh ^{2} \frac{r}{R}\left(d \theta^{2}+\cos ^{2} \theta d \Omega_{d-1}^{2}\right)
\end{aligned}
$$

On-shell action gravity action on this wedge geometry,

$$
I=-\frac{1}{16 \pi G_{N}} \int_{W} \sqrt{g}(R-2 \Lambda)-\frac{1}{8 \pi G_{N}} \int_{Q_{1} \cup Q_{2}} \sqrt{h}(K-T)-\frac{1}{8 \pi G_{N}} \int_{\Sigma} \sqrt{h} K
$$

For the wedged AdS_{4}, we have

$$
I_{W A d S_{4}}=-\frac{R^{2}}{2 G_{N} \epsilon^{2}} \sinh \frac{\rho_{*}}{R}+\frac{R^{2}}{G_{N}} \sinh \frac{\rho_{*}}{R} \log \epsilon+O(1)
$$

Free energy on Sphere

$$
I_{W A d S_{4}}=-\frac{R^{2}}{2 G_{N} \epsilon^{2}} \sinh \frac{\rho_{*}}{R}+\frac{R^{2}}{G_{N}} \sinh \frac{\rho_{*}}{R} \log \epsilon+O(1)
$$

The form for CFT_{2} is

$$
I_{C F T_{2}}=\# \frac{1}{\epsilon^{2}}+\frac{\mathrm{c}}{6} \chi(\Sigma) \log \epsilon+O(1)
$$

The ϵ dependence perfectly matches !!

The central charge (i.e. degrees of freedom) of the wedged AdS_{4} is $\left(\chi\left(\mathrm{S}^{2}\right)=2\right)$

Next, we will check this result in an independent way.

Enłanglemenł entropy

Enłanglement entropy can be evaluated from both CFT and graviły side. Therefore, it is very useful to check our new holographic principle.

For simplicity, let us focus on $\mathrm{AdS}_{4} / \mathrm{CFT}_{2}$ and consider a single interval a with size l.
In this case, the entanglement entropy in CFT_{2} is known as

$$
S_{A}=\frac{\mathrm{c}}{3} \log \frac{l}{\epsilon}
$$

Let us compare this with gravity calculation.

Holographic EE

well-known HEE formula

The holographic entanglement entropy for our holography is naturally defined by recalling its definition,

Holographic EE

This formula in 4d case leads to

$$
S_{A}=\frac{R^{2}}{G_{N}} \sinh \frac{\rho_{*}}{R} \log \frac{l}{\epsilon}
$$

This form matches with the CFT_{2} result.
We can extract the central charge from this result as

This is completely same as the previous result!
Note: we can see this matching for more general cases (higher dimension and intervals).

Holographic EE

More consistency check:
HEE for a round disk with radius l

- $\mathrm{AdS}_{5} / \mathrm{CFT}_{3}$

$$
S_{A}=\left(\frac{\pi R^{3}}{G_{N}^{(5)}} \sinh \frac{\rho_{*}}{R}\right) \frac{l}{\epsilon}-\frac{\pi R^{3}}{G_{N}^{(5)}}\left(\frac{\rho_{*}}{2 R}+\frac{1}{4} \sinh \frac{2 \rho_{*}}{R}\right)+0\left(\frac{\epsilon}{l}\right)
$$

- $\mathrm{AdS}_{6} / \mathrm{CFT}_{4}$

$$
S_{A}=\left(\frac{\pi R^{4}}{G_{N}^{(6)}} \sinh \frac{\rho_{*}}{R}\right)\left(\frac{l}{\epsilon}\right)^{2}-\frac{\pi R^{4}}{G_{N}^{(6)}}\left(\frac{\sinh \frac{3 \rho_{*}}{R}}{12}+\frac{3}{4} \sinh \frac{\rho_{*}}{R}\right) \log \frac{l}{\epsilon}+0(1)
$$

This scaling profile of HEE agrees with CFT_{d-1} results

Holographic EE

CFT

Double interval case: We found transition like the usual HEE.

Implication:

CFT dual to Wedge geometry is similar to holographic CFT (ie. gapped CFT)

But in this work, we do not identify any specific features of the dual CF'T in a definite way, except for central charge. This is very interesting future direction!

Comments

- CFT_{d-1} dual to AdS_{d+1}
- $c=\frac{3 R^{2}}{G_{N}} \sinh \frac{\rho_{*}}{R}$
- Large DoF of AdS_{d+1} leads to infinite tower of primary operators, which are interpreted as KK modes in brane world.

\Rightarrow NOT holographic CFT

- Zero size limit seems to be singular, but from gravity perspective, quantity in CFT_{d-1} are welldefined as wee saw.

Comments

o New construction of CFT_{1} ?

One construction of CFT_{1} is known as the dual of JT gravity. But more precisely this is not conformal but near conformal. From our $\mathrm{AdS}_{3} / \mathrm{CFT}_{1}$, the dual theory is just a part of AdS_{3}, therefore, the CFT_{1} is really conformal field theory.

Joining graviły

Comments

- New sełup

Joining graviły

is consistent with the central charge derived from EE.

- In general, if ρ_{*} is large, effective d-dimensional gravity is well-described (like R-S model).

W-holography at finite łemp.

Let us consider more general case.
BTZ is simplest one other than Poincare AdS.
Metric of BTZ:

$$
d s^{2}=-\left(r^{2}-r_{0}^{2}\right) d t^{2}+R^{2} \frac{d r^{2}}{r^{2}-r_{0}^{2}}+r^{2} d x^{2}
$$

Coordinate transformation

$$
t^{\prime} \pm x^{\prime}= \pm e^{\frac{r_{0}}{R}(x \pm t)} \sqrt{1-\frac{r_{0}^{2}}{r^{2}}}, \quad z=\frac{r_{0}}{r} e^{\frac{r_{0}}{R} x}
$$

Poincare:

$$
d s^{2}=R^{2}\left(\frac{d z^{2}-d t^{\prime 2}+d x^{\prime 2}}{z^{2}}\right)
$$

W-holography ał finiłe łemp.

General solution to Neumann bdy. in Poincare metric

$$
(z-\alpha)^{2}+\left(x^{\prime}-p\right)^{2}-\left(t^{\prime}-q\right)^{2}=\beta^{2}
$$

Its tension is $T=\frac{\alpha}{\beta R}$

Coordinate transformation

RTK 1 : AdS, brane
谊

RT $=1: R_{2}$ brane

$$
r(x)=2 r_{0} \frac{r_{0} x}{R}
$$

RT >1 : $d S_{2}$ brane

$$
r(x)=\frac{r_{0} T R}{\sqrt{T^{2} R^{2}+1} \cosh \frac{r_{0} x}{R}}
$$

W-holography at finite temp.

$$
\begin{gathered}
T>1 / R \\
\mathrm{dS}_{2} \text { brane }
\end{gathered}
$$

AdS brane case:

$$
\beta \sinh \rho_{*} . \rho_{*}=2 \times S_{b d y}
$$

Gravity action is consistent with anomaly of CFT_{1}. DoF of CFT_{1} is equal to DoF of two AdS branes.

W-holography at finite temp.

dS brane case?

No asymptotic boundary \Rightarrow No CFT dual ?

Contents

- Introduction
- Basics of AdS/BCFT
- Quick lesson of BCFT
- Gravity dual
- Wedge holography
- Codimension two holography
- Another wedge holography
o Summary

Imaginary BCFT

BTZ

Bubble AdS

Profile of bubble brane is

$$
(z-\alpha)^{2}+x^{2}+t^{2}=\beta^{2} \quad \text { with } \quad|\alpha|>|\beta|
$$

Bubble AdS had not been considered in AdS/BCFT context. Here, we give the CFT dual of this bubble AdS.

Imaginary BCFT

$$
T \geqq l / R!\text { AdS }
$$

This geometry has BCFT dual (knownl).
Its bdy. is circle with radius

Note that $T<1 / R \Leftrightarrow \beta^{2}>\alpha^{2}$

Imaginary BCFT

analytic

continuation
$T \& 1 / R!$ AdS z_{2} brane

$T>1 / R$ implies

Imaginary radius is problematic, but in gravity picture, this analytic continuation is not so problematic.
We formally define imaginary BCFT.

EE in BCFT

Let us recall that mirror method can completely fix 1 pt.correlator.
mirror image

1-pt. correlator in BCFT is

$$
\langle\phi(x)\rangle_{\text {disk }} \approx\left|\phi(x) \phi\left(\frac{r^{2}}{x}\right)\right|
$$

up to conformal prefactor.

EE in BCFT

Let us recall that mirror method can completely fix 1 pt.correlator.

EE in BCFT

For example, EE in the right setup can be evaluated by

$$
\left\langle\sigma_{n}(\tau+i a)\right\rangle_{d i s k}=g_{B}\left(\frac{r}{\tau^{2}+a^{2}-r^{2}}\right)^{2 h_{\sigma_{n}}}
$$

Lorentzian ver. of Euclidean disk
where $S_{b d y}=\log g_{B}$ is boundary entropy

EE in Im-BCFT

Let us consider imaginary BCFT in physical setup

Analytic continuation to imaginary radius

creation of universe sełup
Naïve analytic continuation is imaginary.
To be more careful.

EE in Im-BCFT

$$
g_{B}=\left\langle\sigma_{n} \mid B\right\rangle=\frac{Z_{n}^{\beta, B}}{\left(Z_{1}^{\beta, B}\right)^{n}}
$$

where β is boundary state related to σ_{n} (which can be absorbed in regularization ϵ)

Conformal map

Cylinder with circumstance $2 \pi n$

EE in Im-BCFT

$$
g_{B}=\left\langle\sigma_{n} \mid B\right\rangle=\frac{Z_{n}^{\beta, B}}{\left(Z_{1}^{\beta, B}\right)^{n}}
$$

$Z_{n}^{\beta, B}$

where β is boundary state related to σ_{n} (which can be absorbed in regularization ϵ)

$$
Z_{n}^{\beta, B}=\langle\beta| e^{-\frac{1}{2 \pi n} \log \frac{R}{\epsilon} H}|B\rangle \underset{\epsilon \rightarrow 0}{\longrightarrow} e^{-\frac{1}{2 \pi n} \log \frac{R}{\epsilon} E_{0}}\langle\beta \mid 0\rangle\langle 0 \mid B\rangle
$$

R is formal radius $R=1$ ($\rightarrow i$ later). As a result,

$$
\left\langle\sigma_{n} \mid B\right\rangle=\left(\frac{R}{\epsilon}\right)^{-2 h_{\sigma_{n}}}(\langle\beta \mid 0\rangle\langle 0 \mid B\rangle)^{1-n}
$$

Analytic continuation $(R \rightarrow i R)$ leads to

$$
\left\langle\sigma_{n} \mid I m-B\right\rangle=i^{-2 h_{\sigma_{n}}}\left\langle\sigma_{n} \mid B\right\rangle \quad \text { cancel imaginary part }
$$

EE in Im-BCFT

CFT calculation is non-trivial but gravity calculation is trivial (just a geodesic in a cut AdS).
\Rightarrow Consisłency check from gravity calculation is possible.

$$
\begin{aligned}
S_{A} & =\lim _{n \rightarrow 1} \frac{1}{1-n} \log \left\langle\sigma_{n}(a, t) \overline{\sigma_{n}}(b, t)\right\rangle_{\text {Im-disk }} \\
& = \begin{cases}\frac{c}{6} \log \frac{a^{2}+r^{2}-t^{2}}{r \epsilon}+\frac{c}{6} \log \frac{b^{2}+r^{2}-t^{2}}{r \epsilon}+2 g_{B} & : \text { disconnected } \\
\frac{c}{3} \log \frac{b-a}{\epsilon} & : \text { connected }\end{cases}
\end{aligned}
$$

CFT calculation based on our prescription completely matches with the gravity calculation!

BCFT Correlałor

JW

$$
\begin{aligned}
& \text { Instead of technical } \\
& \text { consideration, we can give } \\
& \text { a simple calculation rule of } \\
& \text { a correlator in Im-BCFT. }
\end{aligned}
$$

Lorentzian Im-BCFT

Analytic continuation to Lorentzian signature provides time-like boundary in CFT.
This setup is interesting for two reasons:

- universe creation sełup
o dS braneworld (as mentioned before) by CFT description as boundary state

Confents

- Introduction
- Basics of AdS/BCFT
- Quick lesson of BCFT
- Gravity dual
- Wedge holography
- Codimension two holography
- Another wedge holography
o Summary

Summary(1)

Wedge Holography $\operatorname{AdS}_{a+1}=\mathrm{CFT}_{a-1}$

Justificafions

- Brane world picture:

Brane world holography + AdS/CFT (at large ρ_{*})

- BCFT picture:

CFT's on two boundaries with bulk interaction

- Matching of physical quantities
explicit calculation of DoF and EE from both sides

Summary(1)

Wedge Holography $\operatorname{AdS}_{a+1}=\mathrm{CFT}_{a-1}$

Future direction

- Employing this new laboratory
- Identifying universal properies of CFT_{d-1}
- Joining gravity from AdS_{d+1} and CFT_{d-1}
\Rightarrow more general double holography setup
- More justification (e.g. realization via string theory)

Summary(2)

dS brane / Imaginary BCFT duality

Fułure direction

$$
\begin{aligned}
& \text { Th } \mathrm{t} \text { li/R } \\
& \text { dS brant }
\end{aligned}
$$

o Employing this new laboratory
o More understanding of dS braneworld holography
o Universe creation setup
o More justification

