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Where are we now?

Q1 통계물리학에서는 어떤 주제를 연구했었는가?

Q2 최근에는 어떤 주제를 연구하는가?

Q3 어떤 중요한 연구 문제가 남아있는가?
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Random walks

(I) Pn(x) is the occupation probability at site x at time step n.

Pn(x) = pPn−1(x− 1) + qPn−1(x+ 1)

These random walks may be understood as a binomial process,
∏
n(r)

that the walk takes r steps to the right and n− r steps to the left.∏
n(r) =

(
n
r

)
prqn−r. Using the stirling’s approximation and x = 2r − n,

n! ∼
√

2πn(ne )n

Pn(x) =
∏
n

[(x+ n)/2] =
1√

2πnpq
e−[x−n(p−q)]2/2npq

=
1√

2πnσ2
e−[x−n〈x〉]2/2nσ2

=
1√

4πDn
e−[x−n〈x〉]2/4Dn 〈x2〉 = 2Dt
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Random walks
(II) The master equation:

(n is a position)

∂Pn
∂t = Pn+1 − 2Pn + Pn−1. Using P (k, t) =

∑∞
n=−∞ Pn(t)eikn,

∂P (k,t)
∂t = 2(cos k − 1)P (k, t) ⇒ P (k, t) = e2(cos k−1)t

excosk =
∑∞

n=−∞ e
iknIn(x) → Pn(t) = In(2t)e−2t t→∞−−−→ 1√

4πt
e−n

2/4t

Modified Bessel function:

In(x) = 1
2πi

∮
e(x/2)(t+1/t)t−n−1dt
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Random walks
Transition matrix

Pi,j(n): Probability that a random walker starting from site i is at site j at
time step n.

Pi,j(n) =
∑
j1

Wj1,jPi,j1(n− 1) =
∑
j1

Wj1,j

∑
j2

Wj2,j1Pi,j2(n− 2)

= · · · =
∑
j1

∑
j2

· · ·
∑
l

Wj1,jWj2,j1 · · ·Wjn−1→jn−2Wi,jn−1

= (Wn)i,j

The generating function (g-function) of Pi→j(n):

Pi,j(s) ≡
∞∑
n=0

Pi,j(n)sn =

∞∑
n=0

(Wn)i,js
n =

(
1

I − sW

)
i,j

=

(
1

(1− s)I + swV

)
i,j
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In Euclidean lattice

Wi,j =

{
1
2d (i, j) is n.n

0 otherwise

Generally,

Wi,j =


w (i, j) is n.n

1− ziw i = j

0 otherwise

zi: coordination number of site i s.t.
1− ziw ≥ 0

Laplacian matrix Vi,j ≡


−1 (i, j) is n.n

zi i = j

0 otherwise

⇒W = I − wV
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Random walks
Return to the origin

Po(n): Probability to return to the origin (any starting site i) after time n

Po(n) =
1

N

N∑
i=1

Pi,i(n)

The g-function of Po(n):

Po(s) ≡
∞∑
n=0

Po(n)sn =
1

N

∑
i

(
1

(1− s)I + swV

)
i,i

=
1

N

∑
`

1

(1− s) + swλ`

=

∫ ∞
0

ρs(λ)dλ

1− s(1− wλ)
=
∑
n=0

∫ ∞
0

sn(1− wλ)nρs(λ)dλ
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⇒ Po(n) =

∫ ∞
0

(1− wλ)nρs(λ)dλ ≈
∫ ∞

0
e−nwλρs(λ)dλ,

where ρs(λ) is the spectral density of Laplacian matrix V .

P1) Show the following:

Consider a harmonic motion: md2xi
dt2

= −k
∑

j∈n.n. of i(xi − xj)
λxi =

∑
j Vi,jxj

Then the eigenvalue λ ∼ ω2, and the spectral density is ρs(λ) ∼ λ
ds
2
−1

(ds: spectral dimension)

P2) Show the following:

⇒ Po(n) ∼ n−ds/2 ⇒ Po(s) ∼ (1− s)
ds
2
−1 → singular when ds < 2 as

s→ 1.
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Mean distance
Rij is the distance from site i to j
Mean distance after n time steps: (dw: random-walk dimension)

〈R2
n〉 =

1

N

∑
i

∑
j

R2
ijPi,j(n) ∼ n2/dw

R2(s) =
∑∞

n=0〈R2
n〉sn ∼

∑
n n

2/dwsn ∼

〈R2
n〉 = 2Dn in Euclidean lattice. D is diffusion constant. dw = 2.

The number of sites within radius R is M ∼ Rdf ∼ ndf/dw .
The prob. to return to the origin: Po(n) ∼ 1

M ∼ n
−df/dw ∼ n−ds/2

dw =
2df
ds

→ For ds ≤ 2, a RW surely returns to the origin, so that the walk is
recurrent.
→ For ds > 2, RW never returns, and the walk is transient.
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Laplacian transform and Generating function

For f(t) ∼ t−µ (t� 1 and µ < 1), the Laplace transform is given as
follows:

f(s) =

∫ ∞
0

t−µe−stdt

= sµ−1

∫ ∞
0

x−µe−xdx = Γ(1− µ)sµ−1

Γ(z) =
∫∞

0 xz−1e−xdx

R2(s) ∼
∑
n

n2/dwsn ∼
∑
n

n2/dwen ln s for 0 < s < 1

∼
∑
n

n2/dwe−n(1−s) ∼ Γ(2/dw + 1)(1− s)−(2/dw+1)
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First-passage properties

P (r, t) is the occupation prob. of a RW.

F (r, t) is the prob. for a RW to first reach r at t.

P (r, t) =

∫ t

0
F (r, t′)P (0, t− t′)dt′ + δr,0δ(0)

Laplace transforms: FL(r, s) =
PL(r,s)−δr,0
PL(0,s)

The eventual return probability to the origin: R = FL(0, 0) =
∫∞

0 F (0, t)dt

If R = 1, the walk is recurrent, and otherwise, it is transient.

Using P (t) ' 1
(4πt)d/2

as t→∞,

P3) Show that F (t) ' 1√
π

1
t3/2

in 1d; F (t) ' 4π
t(ln t)2

in 2d; and

F (t) ' (1−R)2

8π3/2
1
t3/2

in 3d. Find R in 3d.
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Vicious random walks

When two random walks meet, they mutually annihilate. What is their
survival prob.?
→ Consider two RWers starting from x1 and x2. Their relative position is
y = x2 − x1 for x2 > x1.

c(y, t) =
1√

8πDt

[
e−(y−y0)2/8Dt − e−(y+y0)2/8Dt

]
P4) show that F (t) ∼ y0√

8πDt3
e−y

2
0/8Dt ∼ t−3/2

The survival probability S(t) = 1− 2√
π

∫∞
y0/
√

8Dt e
−u2du → y0√

2πDt
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Gaussian model: a spin model of RWs

−βH = β
∑
<i,j>

Wi,jφiφj +
∑
i

hiφi,

φi is a spin continuous variable at site i in the range [−∞,∞] with weight
e−φ

2
i . The partition function is given as

Z =

∫
[dφ]e−

∑
i φ

2
i+β

∑
<ij>Wijφiφj+

∑
i hiφi

= Πl

[ π

1− βλl

] 1
2

exp
[
(
∑
i

hiail)
2/4(1− βλl)

]
Internal energy: With hi = 0,

u = − 1

N

∂

∂β
(lnZ) =

=
1

2β

(
1− 1

N

∑
i

1

I − βW

)
ii

because
∑

jWi,j = 1, ai,0 = 1√
N

and λ0 = 1.
∑

l ailajl = δi,j
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u ∼
(

1− β

βc

)1−αg
⇔ Po(s) ∼ (1− s)

ds
2
−1

1− αg = ds
2 − 1 ⇒ 2− αg = ds

2 =
df
dw

= dfνg

Correlation function

Γij =
∂2 lnZ

∂hi∂hj
= 〈φiφj〉 − 〈φi〉〈φj〉

=
1

2

∑
l

ailajl
1− βλl

=
1

2

( 1

I − βW

)
i,j
⇔ Pi→j(β)

Susceptibility

χ =
1

N

∑
i,j

Γi,j =
1

2N

∑
i,j,l

ailajl
1− βλl

= ,

because
∑

jWi,j = 1, ai,0 = 1√
N

and λ0 = 1.
∑

l ailajl = δi,j γg = 1
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Correlation length

ξ2 =
∑

ij R
2
ijΓij/

∑
ij Γij .

Mean distance 〈R2
n〉, and its g-function R2(s) =

∑∞
n=0〈R2

n〉zn

R2(s) = ξ2(s)χ(s) ∼ (1− s)−2νg−γg ∼ (1− s)−2νg−1

R2
n ∼ n2νg (νg = 1/dw)

P5) Consider a Sierpinski gasket. i) Obtain the fractal dimension. Consider
random walks on an infinite Sierpinski gasket. ii) Obtain the spectral
dimension and random walk dimension.
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Sierpinski Gasket and Self-avoiding walks
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Self-avoiding walks

A model for solvent or polymer configuration. Non-markovian process.

Γi,j(n) is the number of ways for a SAWer starting from site i to reach site
j after n steps.

Its generating function: Γi,j(s) =
∑∞

s=0 Γi,j(n)sn

Ni(n) is the number of ways for the SAWer to reach any site after n steps:
Ni(n) =

∑
j Γi,j(n)

N(n) = 1
N

∑
iNi(n) and N(s) =

∑
nN(n)sn.

If N(n) ∼ nγ−1µn, then N(s) ∼ (1− µs)−γ , where µ = 1/sc.

〈R2(n)〉 =
∑

i,j R
2
ijΓij/

∑
i,j Γij ∼ n2ν .

R behaves as n in 1d, n3/4 in 2d, n0.59 in 3d, ∼ n1/2(lnn)1/8 and n1/2 for
d > dc = 4. Flory’s formula is known as ν = 3

d+2 .
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Flory’s formula
~r = ~a1 + ~a2 + · · ·+ ~aN

〈~r2〉 ≡ 〈
∑

i,j ~ai · ~aj〉 = Na2

(〈~r2〉 ≡ r2 and Na2 ≡ R2
0)

pd(r) ∼ 1
N3/2 e

− 3
2
r2

Na2

Free energy:

Felastic = E − TS = F (0) + 3
2
Tr2

R2
0

− Let R is the linear size of a polymer chain of N monomers.

− cint = N
Rd

is the density of monomers.

− frep = 1
2Tv(T )c2 is the repulsive energy per volume among

monomers (c is local density of monomers); 〈c2〉 ∼ c2
int

− Free energy by repulsion is Frep ∼ Tv(T )c2Rd ∼ TvN2

Rd

− Total free energy divided by T : vN
2

Rd
+ 3

2
R2

R2
0

− Rd+2
F ∼ va2N3 → Rf ∼ N3/(d+2) → ν = 3/(d+ 2).
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Self-avoiding loop

Po(n) is the probability to reach a neighbor of the starting position after n
steps. Po(n) = 2

∑
〈i,j〉 Γi,j(n)/

∑
i,j Γi,j(n).

L(n) is the number of self-avoiding loops comprised of n bonds.
1
N

∑
<i,j> Γi,j(n) = (n+ 1)L(n+ 1)

If L(n) is scaled as ∼ nα−3µn, then L(s) =
∑∞

n=0 L(n)sn ∼ (1− µs)2−α.

Po(n) ∼ 1
n1−α+γ .
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n-vector cubic model
−βH = K1

∑
<i,j>

si · sj +K2

∑
<i,j>

(si · sj)2

si · sj = nδ(αi, αj)σiσj
n is the dimension; αi is the direction of spin i (αi = 1, · · · , n); and
σi = ±1 is an Ising spin at site i.

The partition function is

Z =
1

(2π)N

∑
{si}︸ ︷︷ ︸

≡Tr

∏
<ij>

exp
[
K1

∑
<i,j>

si · sj +K2

∑
<i,j>

(si · sj)2
]

︸ ︷︷ ︸
1+sinhnK1en

2K2δ(αi,αj)σiσj+(en
2K2 coshnK1−1)δ(αi,αj)

= Tr
∏
<ij>

[1 + tanhnK1δ(αi, αj)σiσj ]

= Tr
∏
<ij>

[1 + vnδ(αi, αj)σiσj ] as n→ 0

= Tr
∏
<ij>

[1 + vOij ] =
∑
G

vLnC−N+L v means a bond
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Z = Tr(1 + vO12)(1 + vO23)(1 + vO31)

= Tr(1 + 3vO12 + 3v2O12O23 + v3O12O23O31)

=

n∑
α1=1

n∑
α2=1

n∑
α3=1

σ1=1∑
σ1=−1

σ2=1∑
σ2=−1

σ3=1∑
σ3=−1

(1 + 3vO12 + 3v2O12O23 + v3O12O23O31)
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n-vector cubic model

where G is graph, C is the number of clusters, L is the number of bonds,
S ≡ C −N + L is the cyclomatic number.
L(`) is the number of loops of length `

Z = 1 + n

∞∑
`=0

NL(`)v` +O(n2)

−f = lim
N→∞

1

nN
lnZ =

∞∑
`=0

L(`)v`︸ ︷︷ ︸
the generating function of SA loop

+O(n)

P5’) Consider a Sierpinski gasket. i) Obtain the fractal dimension.
Consider random walks on an infinite Sierpinski gasket. ii) Obtain the
spectral dimension and self-avoiding walk dimension ν.
Note: P5 과 P5’ 중 하나 선택
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Other random walks

i) Levy flight random walks (J-H Jeon)

ii) RWs with waiting times

iii) RWs in a random potential: Sinai’s diffusion (J-H Jeon)

iv) RWs on complex networks (D.S. Lee)

vi) RWs on simplicial complexes. (Later)
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Kinetics of reaction process
Single-species annihilation/coalescence

Two types of reactions:

i) Annihilation reaction: A+A
K−→ φ

ii) Coalescence reaction: A+A
K−→ A

ρ(t) is the density of A particles.
Assume that the reactants are perfectly mixed at all times and thus the
density at every site is always the same.

i)
dρ

dt
= −2Kρ2 ⇒ ρ(t) =

The true asymptotic behavior by the simulation that particles diffuse in the
system and disappear when they meet.

But, ρ(t) ∼


, d = 1 ,

, d = 2 ,

, d > 2 .

So there exists a critical dimension dc = 2. So there exists something more.
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Heuristic arguments
For the reaction A+A→ φ,
in a time interval t, each particle explores the region ` ∼

√
Dt in 1d.

the typical separation between surviving particles is of the order of `.
⇒ ρ(t) ∼ `−1 ∼ (Dt)−1/2.

More generally, the number of distinct sites N visited by a random walk
after n steps

N ∼


n1/2 , d = 1 ,

n/ lnn , d = 2 ,

n , d > 2 .

Thus, it seems that ρ(t) ∼ n−1.
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Two-species annihilation electron-hole recombination, etc

A+B → φ (when the densities of
two species of particles are even)

ρ(t) ∼

{
, d ≤ 4 ,

t−1 , d > 4 .

So the critical dimension is dc = 4.
There is no logarithmic correction for
d = dc.

Heuristic argument
In a spatial region of linear size `, the initial number of A particles is

NA = ρ0`
d ±

√
ρ0`d and NB = ρ0`

d ±
√
ρ0`d

NA −NB = ±
√
ρ0`d. One of the species with population

√
ρ0`d survive

within the region of linear size `. Thus the local density becomes
ρ ∼

√
ρ0`d/`

d. Because, ` ∼
√
Dt,

ρ(t) ∼ √ρ0(Dt)−d/4 and
dρ

dt
∼ D√ρ0(Dt)−d/4−1
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Three scales

i) the average distance between neighboring particles

`AA ∼ ρ−1/d ∼ ρ−1/2
0 td/4.

ii) Domain linear size: t 시간 동안 입자들은 L 만큼 영역 내에서 random

walks 를 하므로 그 영역 내에서 A+B → 0 의 reaction 이 일어 날 것이고

그 중 majority 가 살아 남아 domain 을 만들 것이다. 그러므로 domain size

는 L ∼
√
Dt 이 됨.
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iii) The distance between two particles of different species, `AB.

1-i) For 1d, a typical AB pair reacts in a time ∆t ∼ `2AB/D.

1-ii) The number of reactions per unit length per domain:

∆ρ ∼ O(1/L) ∼ O(1/
√
Dt), where L is domain size.

1-iii) ∆ρ/∆t ∼ −(Dt)−1/2/(`2AB/D).

1-iv) Thus, `AB ∼ [ρ(0)]−1/4(Dt)3/8.

2-i) For 2d, a typical AB pair reacts in a time ∆t ∼ `2AB/D.

2-ii) The number of reactions per unit length per domain: ∆ρ is of the

order of [(Dt)1/2/`AB]/(
√
Dt)2, where L is domain size.

2-iii) ∆ρ/∆t ∼ [(Dt)1/2/`AB ]/(
√
Dt)2

`2AB/D
.

2-iv) Thus, `AB ∼ [ρ(0)]−1/6(Dt)1/3.

For d = 3, random walks are transient, so `AB = `AA ∼ t1/4.
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Two-species annihilation on fractal structure

A+B → φ

ρ(t) ∼

{
t−ds/4 , ds ≤ 4 ,

t−1 , ds > 4 .

So the critical dimension is ds,c = 4.
There is no logarithmic correction for
ds = dc.

Heuristic argument
In a spatial region of linear size `, the initial number of A particles is

NA = ρ0`
df ±

√
ρ0`df and NB = ρ0`

df ±
√
ρ0`df

NA −NB = ±
√
ρ0`df . One of the species with population

√
ρ0`df survive

within the region of linear size `. Thus the local density becomes
ρ ∼

√
ρ0`df /`

df . Because, ` ∼ (Dt)1/dw ,

ρ(t) ∼ √ρ0(Dt)−ds/4 and
dρ

dt
∼ D√ρ0(Dt)−ds/4−1
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Three scales on fractal structure

Challenging project 1)
Determine `AA, `AB, and Domain size L in terms of df and ds.
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Two species annihilation on SF networks

A+B → 0 on fractal SF networks (Yun, et al., NJP (2009))
A fractal SF network is constructed: At each branching step, a node
creates its m branches with probability pm ∼ m−γ with 〈m〉 = 1.

df =

{
γ−1
γ−2 , for 2 < γ < 3 ,

2 , for γ > 3 . ds =

{
2(γ−1)
2γ−3 , for 2 < γ < 3 ,

4
3 , for γ > 3 .

dw =
2df
ds

i) 1
ρ(t) −

1
ρ(t) ∼ t

ds/4

ii) The linear size of a domain L ∼ t1/dw .
iii) `AA ∼ ρ(t)−1/df ∼ t1/(2dw).

iv) NAA ∼ (1/`
df
AA)ρ(t) ∼ t−ds/2 and NAB ∝ dρ/dt ∼ t−ds/4−1
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Other reactions

i) For A1 +A2 + · · ·+AN → φ, when the densities of each species are

even, → ρ(t) ∼ t−d/4 independent of N for d < dc = 4/(N − 1), but

for d > dc, ρ(t) ∼ t−1/(N−1)

ii) For NA→ φ, under the same condition of i), ρ(t) ∼ t−d/2 for

d < dc = 2/(N − 1), but ρ(t) ∼ t−1/(N−1) for d > dc

iii) Ai +Aj
Kij−−→ Ai±1 +Aj∓1 solvable.

P 6) Show i) and ii)
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Aggregation
An example
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Aggregation

An example

Kahng (SNU) Kinetic models 2021 Winter School 41 / 63



Aggregation

Blood coagulation, milk curdling, star formation, etc.

Ai +Aj
Kij−−→ Ai+j

The master equation (Smoluchowski equation for Kij = 1) under the

conditions: Spatial homogeneity, Bimolecular reactions (ignoring

higher-body interactions), and then shape independence. ck(t) = Nk(t)/N

dck
dt

=
1

2

∑
i+j=k

Kijcicj − ck
∑

Kikci

⇒ M1(t) ≡
∑

k=1 kck(t) = 1 is conserved. That is, dM1
dt = 0
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i) Kernel of Brownian motion

Kij ∼ (Di +Dj)(Ri +Rj):

Di is diffusion constant Di ∝ 1/Ri (Stoke-Einstein relation), where Ri is

radius of a cluster of size i. Clusters are regarded as spheres. So contact is

made in 1d way. Ri ∼ i1/3 in 3d.

Kij ∼ (i−1/3 + j−1/3)(i1/3 + j1/3) ∼ 2 +
(
i
j

)1/3
+ ( ji

)1/3
This kernel is not constant. But it satisfies the scaling behavior

Ki,j = Kai,aj . Thus, Kij = 2 is considered.

ċk =
∑
i+j=k

cicj − 2ck
∑
i=1

ci︸ ︷︷ ︸
M0(t)

with an initial condition ck(0) = δk,1.
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i) Kernel of Brownian motion Kij = 2
Moments

Define the moment of the mass distribution Mn(t) ≡
∑

k=1 k
nck(t).

Ṁn =
∑
i,j

(i+ j)ncicj − 2MnM0

Ṁ0 = −M2
0 M0 = 1/(1 + t)

Ṁ1 = 0 M1 = 1

Ṁ2 = 2M2
1 M2 = 1 + 2t

Ṁ3 = 6M1M2 M3 = 1 + 6t+ 6t2

Mn ' n!tn−1
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i) Kernel of Brownian motionKij = 2
cluster size distribution: Exponential ansatz

Suppose ck(t) = A(t)a(t)k−1

ċk =
∑
i+j=k

cicj − 2ck

This equation must be held for any k. So Ȧ = − 2A2

1−a , ȧ = A.

We use
∑

k kck = 1 to get A = (1− a)2. Then a = t
1+t and A = 1

(1+t)2

→ ck(t) = tk−1

(1+t)k+1
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i) Kernel of Brownian motion Kij = 2
Generating function method

g(z, t) =
∑

k=1 ck(t)z
k

dg

dt
=
∑
k=1

∑
i+j=k

ciz
icjz

j − 2
∑
k=1

ckz
k
∑
i

ci = g2 − 2gM0

= g2 − 2gM0 +M2
0 −M2

0

d(g −M0)

dt
= g2 − 2gM0 +M2

0 = (g −M0)2

g =
1

1 + t

z

1− (z − 1)t
=
∑
k

zk
tk−1

(1 + t)k+1

ck(t) =
tk−1

(1 + t)k+1

P7) Suppose that the cluster size dist. at t = 0 is given by ck(0) = bk−γ ,

where 2 < γ < 3. Solve the generating function g(z, t) and ck(t).

Kahng (SNU) Kinetic models 2021 Winter School 46 / 63



ii) Gelation Kij = ij

A monomer has three branches (reactive endgroups). Then two monomers
are merged and produce a dimer with four branches. When one monomer
and one dimer are merged, a trimer has five branches. Generally, k-mer has
(f − 2)k + 2 branches, where f is the number of branches of a monomer.

Kij = [(f − 2)i+ 2][(f − 2)j + 2] = (f − 2)2ij + 2(f − 2)(i+ j) + 4

ċk =
1

2

∑
i+j=k

ijcicj − kck

=1︷ ︸︸ ︷∑
i=1

ici
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Moments : Gelation (giant cluster of infinite size)
Sol-Gel transition. Suppose a system of N monomers. As time passes, two
clusters are merged and generate a bigger cluster. This process is repeated.
At a certain time step, a cluster of size mN of O(1) emerges, called a Gel.

”Mass” means size of a cluster. Consider the moments of the mass
distribution ck. For t < 1,

dM2

dt
=
∑
k=1

k2dck
dt

=
1

2

∑
i=1

∑
j=1

(i+ j)2(ici)(jcj)−
∑
k=1

k3ck

=
∑
i

∑
j

(i2ci)(j
2cj) = M2

2 → M2(t) =
M2(0)

1−M2(0)t

dM3

dt
= 3M3M2 → M3(t) =

M3(0)

(1−M2(0)t)3

dM4

dt
= 4M4M2 + 3M2

3
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Moments for t > 1

Mn(t) =
∑
k

knck =
∑
sol

knck + (knck)gel

M0(t) =
∑
sol

ck

M1(t) =
∑
sol

kck +m

M2(t) =
∑
sol

k2ck +m2N

M3(t) =
∑
sol

kck +m3N2
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Generating function approach

g(y, t) ≡
∑

k kck(t)e
yk

∂g(y, t)

∂t
=

1

2

∑
i=1

∑
j=1

(i+ j)ijcicje
yk −

∑
k=1

k2cke
yk

=
1

2

∑
i=1

i2cie
yi
∑
j=1

jcje
yj +

1

2

∑
i=1

icie
yi
∑
j=1

j2cje
yj

−
∑
k=1

k2cke
yk

= (g − 1)
∂g

∂y

dg
dt = ∂g

∂t + (1− E)∂g∂y = 0

dg
dt = ∂g

∂t + dy
dt
∂g
∂y = 0
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To solve this first-order PDE, one may need to find a quantity along which
g(y, t) remains constant. dg/dt = 0.

As usual, we take dy
dt = 1− g as an invariant quantity over time.

y = (1− g)t+ f(g). f(g) is determined from the initial condition.

g =
∑

k kck(t)e
yk t=0−−→ ey.

So y = (1− g)t+ ln g → ge−gt = ey−t

Set Y = gt and X = tey−t and then X = Y e−Y

Given a function X = f(Y ) with X ' Y for small Y , What is
Y (X) =

∑
n=1AnX

n?

Using Lagrange inversion formula AN = nn−1

n!

g(y, t) =
∑
k

kk−1

k!
tk−1e−kteyk ⇒ ck(t) =

kk−2

k!
tk−1e−kt
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ck(t) = kk−2

k! t
k−1e−kt

t→1−−−−→ e−k(1−t)
2/2

√
2πk5/2

' s−5/2Φ(k/s) for t ≤ 1

with Φ(x) = 1√
2π

e−x/2

x5/2
and s = (1− t)−2.

The stirling’s formula: n! ∼
√

2πn(ne )n

For t > 1, the fraction of nodes in the giant cluster:
m = 1−M1 = 1− g(y = 0, t) ≡ 1− g0(t).

Using the relation g0 = e−(1−g0)t, 1−m = e−mt.

To solve g near t = 1+, let t = 1 + δ. ⇒ m = 2δ = 2(t− 1) + · · · .

m(t) = 1−
∑
k

kck(t) =
2M2

2 (0)

M3(0)
(M2(0)t− 1)
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M2(t) for t > tc

dM2(t)

dt
=

1

2

∑
i

∑
j

(i+ j)2ijcicj −
∑
k

k3ck

=
∑
i

∑
j

i2cij
2cj +

∑
i

i3ci
∑
j

jcj︸ ︷︷ ︸
6=1

−
∑
k

k3ck

= M2
2 −mM3

Mn =
∂n−1g

∂yn−1

∣∣
y=0

M2(t) =
∑
k

k2ck(t) =

{
(1− t)−1, for t < 1,

(emt − t)−1, for t > 1.
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Lagrange inversion formula:
Given a function X = f(Y ) with X ' Y for small Y ,
What is Y (X) =

∑
n=1AnX

n?

An =
1

2πi

∮
Y

Xn+1
dX =

1

2πi

∮
Y

Xn+1

dX

dY
dY

=
1

2πi

∮
Y

f(Y )n+1
f ′(x)dY

=
1

2πi

∮
Y

(Y e−Y )n+1
(1− Y )e−Y dY =

1

2πi

∮
1− Y
Y n

enY dY

=
1

2πi

∮ ∑
k=0

nk

k!

(
Y k−n − Y k+1−n)dY =

nn−1

n!
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Loops (cycles)
E. Ben-Naim and P.L. Krapivsky, PRE 71, 026129 (2005)

Model ER model

∃ N nodes. Links are generated with rate 1/(2N)

self-loop and multiple links are allowed

the average number of links: L = N2t
2N = Nt

2

the average number of self-loops C = Nt
2N = t

2

mean degree t, transition point tc = 1

cluster size dist at tc: ck ∼ k−5/2 (τ = 5/2)

N
∑∞

k=km
ck ∼ 1 → km ∼ N2/3 (Giant cluster size).

Tree

q`(t) is the density of distinct paths of length ` at time t

dq`
dt

=
∑

n+m=`−1

qnqm, with q0(t) = 1

q`(0) = δ`,0, then q0(t) = 1, q1(t) = t, q2(t) = t2, . . . q`(t) = t`

Kahng (SNU) Kinetic models 2021 Winter School 56 / 63



Path length
Path length density in finite systems

p`,k is the density of distinct paths of length ` in components of size k

dp`,k
dt

=
∑

i+j=k,
n+m=`−1

pn,ipm,j +
∑
i+j=k

ip`,ijcj − kp`,k

p`,k = (`+ 1) kk−`−2

(k−`−1)! t
k−1e−kt for t < tc = 1

the characteristic length `c ∼ (1− t)−1 → σ` = 1

p`,k = `(2πk3)−1/2 exp
(
−`2/2k

)
at t = tc. ` ∼

√
k ∼ N1/3
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Cycles

w` is the density of cicles of size ` at time t.
dw`
dt =

Nq`−1

2N = t`−1

2 , → w` = t`

2` → w` = 1
2` at tc = 1.

Cycles in finite systems

u`,k(t) is the average number of unicyclic of length ` contained in the
components of size k at time t.

du`,k
dt

=
1

2
p`−1,k +

∑
i+j=k

iu`,ijcj − ku`,k with u`,k(0) = 0

u`,k(t) ' (8πk3)−1/2tkek(1−t)e−`
2/2k

u`,k(t) ' `−3Φu(k(1− t)2, `(1− t)) near t→ t−c

γ = 1
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Other Kernels

i) when Kij ∼ i+ j: ck(tc) ∼ k−2 but as tc →∞.

ii) when Kij ∼ (ij)ω: ck(tc) ∼ k−τ with

τ =

{
3
2 + ω, for 1

2 < ω < 1 at finite tc,

1 + 2ω, for 0 < ω < 1
2 at infinite tc.

Refs: Ziff, et al., PRL 49, 593 (1982).

Cho et al., PRE 81, 030103(R) (2010).
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Scaling theory

The scaling ansatz: Assume c(s, t) = 1
s∗2 f( ss∗ ).

Because,
∫
sc(s, t)dx = 1 is required. Mn =

∫
sn 1

s∗2 f( ss∗ )dx ∼ s∗(n−1)

Assume that K(ai, aj) ∼ aλK(i, j),

∂c

∂t
=

1

2

∫ x

0
dyK(y, x− y)c(y, t)c(x− y, t)−

∫ ∞
0

dyK(x, y)c(x, t)c(y, t)

Plugging c(s, t) = s∗−2f(s/s∗) into the Smol. Eq.

LHS → ∂c
∂t = − ṡ∗

s∗3 [2f(u) + uf ′(u)] u = x/s∗.

RHS → s∗(λ−3)K(u) (with v = y/s)

K(u) =
1

2

∫ u

0
dvK(v, u− v)f(v)f(u− v)−

∫ ∞
0

dvK(u, v)f(u)f(v)
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ṡ∗(t)

s∗λ(t)
= − K(u)

2f(u) + uf ′(u)
≡ Λ

s∗(t) ∼


t1/(1−λ) ≡ tz, for λ < 1,

eΛt, for λ = 1

(tg − t)−1/(λ−1), for 1 < λ ≤ 2.

2f(u) + uf ′(u) + Λ−1K(u) = 0 ⇐ the way to solve it is not developed yet.
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Aggregation with input
constant kernel

At t = 0, ck(0) = 0. At each time step, a monomer is added to the system.

dck
dt

=
∑
i+j=k

cicj − 2ck
∑
i

ci︸ ︷︷ ︸
M0

+δk,1

Ṁ0 = −M2
0 + 1 → M0(t) = tanh t.

g-function C(z, t) =
∑

k ck(t)z
k.

dC(z, t)
dt

= C2 − 2CM0 + z → dC −M0

dt
= (C −M0)2 + (z − 1)

C(z, t) = tanh t−
√

1− z tanh
(
t
√

1− z
)
.

As t→∞, C(z, t) = 1−
√

1− z. → ck ' 1√
4π

1
k3/2

Because
∑
kck(t) = 1, ∃ a cutoff k∗ s.t.

∑k∗

k=1 kck(t) = 1. So k∗ ∼ t2.

For k > k∗, ck(t) = π2

4t3
e−π

2k/4t2 .

Kahng (SNU) Kinetic models 2021 Winter School 62 / 63



Aggregation with spatially localized input

dck
dt

= D∇2ck +
∑
i+j=k

cicj − 2ck
∑
i

ci + Jδk,1δ(x)

At t = 0, ck(0) = 0. At each time step, a monomer is added to the system.
M1 =

∑
k kck

∂M1

∂t
= D∇2M1 + Jδ(x)

P 8)

M1(t)
t→∞−−−→


? for d = 1,

? for d = 2

? for d = 3.

Aggregation in Euclidean space
Research papers by Meakin and Family
Y.S.Cho and B.Kahng,”Discontinuous percolations in real physical
systems,” Phys.Rev. E 84, 050102(R) (2011).
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