Kinetic models in statistical physics

B. Kahng
Seoul National University
bkahng@snu.ac.kr

The 18th KIAS-APCTP Winter School on Statistical Physics Jan 11,2021 - Jan 15,2021

Contents

(1) Overview
(2) References
(3) Diffusion, Random Walks on fractal structure

- Random walks
- Gaussian model
- Self-avoiding walks and n-vector cubic model
(4) Kinectics of reaction process
- Single-species annihilation/coalescence
- Two-species annihilation
- Two-species annihilation on fractal structure
- Two species annihilation on SF networks
(5) Aggregation

Contents

(1) Overview

(2) References
(3) Diffusion, Random Walks on fractal structure

- Random walks
- Gaussian model
- Self-avoiding walks and n-vector cubic model
(4) Kinectics of reaction process
- Single-species annihilation/coalescence
- Two-species annihilation
- Two-species annihilation on fractal structure
- Two species annihilation on SF networks
(5) Aggregation

Where are we now?

Q1 통계물리학에서는 어떤 주제를 연구했었는가?

Q2 최근에는 어떤 주제를 연구하는가?

Q3 어떤 중요한 연구 문제가 남아있는가?

Contents

(1) Overview

(2) References

(3) Diffusion, Random Walks on fractal structure

- Random walks
- Gaussian model
- Self-avoiding walks and n-vector cubic model
(4) Kinectics of reaction process
- Single-species annihilation/coalescence
- Two-species annihilation
- Two-species annihilation on fractal structure
- Two species annihilation on SF networks
(5) Aggregation

References

- Pavel L Krapivsky, Sidney Redner, and Eli Ben-Naim. A Kinetic View of Statistical Physics (Cambridge University Press, 2010).
- 김두철, 프랙탈 격자계의 물리적 성질 in 통계물리학의 발전: 용봉 조순탁교수 환갑을 기념하여 (비매품, 1985년)
- D. Kim 'Random walks and Gaussian Model on Fractal Lattices," JKPS 17, 271, (1984).
- D. Kim and B. Kahng, "Comments on the self-avoiding walks on finitely ramified fractals," PRA 31, 1193 (1985).
- C.-K. Yun, B. Kahng, and D. Kim, "Annihilation of two-species reaction-diffusion processes on fractal scale-free networks," New. J. Phys. 11, 063025 (2009).
- D. Kim, 연구노트 091102
- 강병남, 복잡계 네트워크 과학, (민음사, 2010).

Contents

(1) Overview

(2) References
(3) Diffusion, Random Walks on fractal structure

- Random walks
- Gaussian model
- Self-avoiding walks and n-vector cubic model
(4) Kinectics of reaction process
- Single-species annihilation/coalescence
- Two-species annihilation
- Two-species annihilation on fractal structure
- Two species annihilation on SF networks
(3) Aggregation

Random walks

(I) $P_{n}(x)$ is the occupation probability at site x at time step n.

$$
P_{n}(x)=p P_{n-1}(x-1)+q P_{n-1}(x+1)
$$

These random walks may be understood as a binomial process, $\prod_{n}(r)$ that the walk takes r steps to the right and $n-r$ steps to the left. $\prod_{n}(r)=\binom{n}{r} p^{r} q^{n-r}$. Using the stirling's approximation and $x=2 r-n$, $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$

$$
\begin{aligned}
P_{n}(x)=\prod_{n}[(x+n) / 2] & =\frac{1}{\sqrt{2 \pi n p q}} e^{-[x-n(p-q)]^{2} / 2 n p q} \\
& =\frac{1}{\sqrt{2 \pi n \sigma^{2}}} e^{-[x-n\langle x\rangle]^{2} / 2 n \sigma^{2}} \\
& =\frac{1}{\sqrt{4 \pi D n}} e^{-[x-n\langle x\rangle]^{2} / 4 D n} \quad\left\langle x^{2}\right\rangle=2 D t
\end{aligned}
$$

Random walks

(II) The master equation:
(n is a position)

$$
\frac{\partial P_{n}}{\partial t}=P_{n+1}-2 P_{n}+P_{n-1} . \text { Using } P(k, t)=\sum_{n=-\infty}^{\infty} P_{n}(t) e^{i k n}
$$

$$
\frac{\partial P(k, t)}{\partial t}=2(\cos k-1) P(k, t) \Rightarrow P(k, t)=e^{2(\cos k-1) t}
$$

$$
e^{x \operatorname{cosk}}=\sum_{n=-\infty}^{\infty} e^{i k n} I_{n}(x) \rightarrow P_{n}(t)=I_{n}(2 t) e^{-2 t} \xrightarrow{t \rightarrow \infty} \frac{1}{\sqrt{4 \pi t}} e^{-n^{2} / 4 t}
$$

Modified Bessel function:
$I_{n}(x)=\frac{1}{2 \pi i} \oint e^{(x / 2)(t+1 / t)} t^{-n-1} d t$

Random walks

Transition matrix

$P_{i, j}(n)$: Probability that a random walker starting from site i is at site j at time step n.

$$
\begin{aligned}
P_{i, j}(n) & =\sum_{j_{1}} W_{j_{1}, j} P_{i, j_{1}}(n-1)=\sum_{j_{1}} W_{j_{1}, j} \sum_{j_{2}} W_{j_{2}, j_{1}} P_{i, j_{2}}(n-2) \\
& =\cdots=\sum_{j_{1}} \sum_{j_{2}} \cdots \sum_{l} W_{j_{1}, j} W_{j_{2}, j_{1}} \cdots W_{j_{n-1} \rightarrow j_{n-2}} W_{i, j_{n-1}} \\
& =\left(W^{n}\right)_{i, j}
\end{aligned}
$$

The generating function (g-function) of $P_{i \rightarrow j}(n)$:

$$
\begin{aligned}
\mathcal{P}_{i, j}(s) & \equiv \sum_{n=0}^{\infty} P_{i, j}(n) s^{n}=\sum_{n=0}^{\infty}\left(W^{n}\right)_{i, j} s^{n}=\left(\frac{1}{I-s W}\right)_{i, j} \\
& =\left(\frac{1}{(1-s) I+s w V}\right)_{i, j}
\end{aligned}
$$

In Euclidean lattice

$$
W_{i, j}= \begin{cases}\frac{1}{2 d} & (i, j) \text { is n.n } \\ 0 & \text { otherwise }\end{cases}
$$

Generally,

$$
W_{i, j}= \begin{cases}w & (i, j) \text { is n.n } \\ 1-z_{i} w & i=j \\ 0 & \text { otherwise }\end{cases}
$$

z_{i} : coordination number of site i s.t.

$$
1-z_{i} w \geq 0
$$

$$
\begin{gathered}
\text { Laplacian matrix } V_{i, j} \equiv \begin{cases}-1 & (i, j) \text { is n.n } \\
z_{i} & i=j \\
0 & \text { otherwise }\end{cases} \\
\Rightarrow W=I-w V
\end{gathered}
$$

Random walks

Return to the origin
$P_{o}(n)$: Probability to return to the origin (any starting site i) after time n

$$
P_{o}(n)=\frac{1}{N} \sum_{i=1}^{N} P_{i, i}(n)
$$

The g-function of $P_{o}(n)$:

$$
\begin{aligned}
\mathcal{P}_{o}(s) & \equiv \sum_{n=0}^{\infty} P_{o}(n) s^{n}=\frac{1}{N} \sum_{i}\left(\frac{1}{(1-s) I+s w V}\right)_{i, i} \\
& =\frac{1}{N} \sum_{\ell} \frac{1}{(1-s)+s w \lambda_{\ell}} \\
& =\int_{0}^{\infty} \frac{\rho_{s}(\lambda) d \lambda}{1-s(1-w \lambda)}=\sum_{n=0} \int_{0}^{\infty} s^{n}(1-w \lambda)^{n} \rho_{s}(\lambda) d \lambda
\end{aligned}
$$

$$
\Rightarrow P_{o}(n)=\int_{0}^{\infty}(1-w \lambda)^{n} \rho_{s}(\lambda) d \lambda \approx \int_{0}^{\infty} e^{-n w \lambda} \rho_{s}(\lambda) d \lambda
$$

where $\rho_{s}(\lambda)$ is the spectral density of Laplacian matrix V.

P1) Show the following:

Consider a harmonic motion: $m \frac{d^{2} x_{i}}{d t^{2}}=-k \sum_{j \in \text { n.n. of } i}\left(x_{i}-x_{j}\right)$ $\lambda x_{i}=\sum_{j} V_{i, j} x_{j}$
Then the eigenvalue $\lambda \sim \omega^{2}$, and the spectral density is $\rho_{s}(\lambda) \sim \lambda^{\frac{d_{s}}{2}-1}$ (d_{s} : spectral dimension)

P2) Show the following:
$\Rightarrow P_{o}(n) \sim n^{-d_{s} / 2} \Rightarrow \mathcal{P}_{o}(s) \sim(1-s)^{\frac{d s}{2}-1} \rightarrow$ singular when $d_{s}<2$ as $s \rightarrow 1$.

Mean distance

$R_{i j}$ is the distance from site i to j
Mean distance after n time steps: (d_{w} : random-walk dimension)

$$
\left\langle R_{n}^{2}\right\rangle=\frac{1}{N} \sum_{i} \sum_{j} R_{i j}^{2} P_{i, j}(n) \sim n^{2 / d_{w}}
$$

$R^{2}(s)=\sum_{n=0}^{\infty}\left\langle R_{n}^{2}\right\rangle s^{n} \sim \sum_{n} n^{2 / d_{w}} s^{n} \sim$
$\left\langle R_{n}^{2}\right\rangle=2 D n$ in Euclidean lattice. D is diffusion constant. $d_{w}=2$.
The number of sites within radius R is $M \sim R^{d_{f}} \sim n^{d_{f} / d_{w}}$.
The prob. to return to the origin: $P_{o}(n) \sim \frac{1}{M} \sim n^{-d_{f} / d_{w}} \sim n^{-d_{s} / 2}$

$$
d_{w}=\frac{2 d_{f}}{d_{s}}
$$

\rightarrow For $d_{s} \leq 2$, a RW surely returns to the origin, so that the walk is recurrent.
\rightarrow For $d_{s}>2$, RW never returns, and the walk is transient.

Laplacian transform and Generating function

For $f(t) \sim t^{-\mu}(t \gg 1$ and $\mu<1)$, the Laplace transform is given as follows:

$$
\begin{aligned}
f(s)= & \int_{0}^{\infty} t^{-\mu} e^{-s t} d t \\
= & s^{\mu-1} \int_{0}^{\infty} x^{-\mu} e^{-x} d x=\Gamma(1-\mu) s^{\mu-1} \\
& \Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x
\end{aligned}
$$

$$
\begin{aligned}
R^{2}(s) & \sim \sum_{n} n^{2 / d_{w}} s^{n} \sim \sum_{n} n^{2 / d_{w}} e^{n \ln s} \quad \text { for } \quad 0<s<1 \\
& \sim \sum_{n} n^{2 / d_{w}} e^{-n(1-s)} \sim \Gamma\left(2 / d_{w}+1\right)(1-s)^{-\left(2 / d_{w}+1\right)}
\end{aligned}
$$

First-passage properties

$P(r, t)$ is the occupation prob. of a RW.
$F(r, t)$ is the prob. for a RW to first reach r at t.

$$
P(r, t)=\int_{0}^{t} F\left(r, t^{\prime}\right) P\left(0, t-t^{\prime}\right) d t^{\prime}+\delta_{r, 0} \delta(0)
$$

Laplace transforms: $F_{L}(r, s)=\frac{P_{L}(r, s)-\delta_{r, 0}}{P_{L}(0, s)}$
The eventual return probability to the origin: $\mathcal{R}=F_{L}(0,0)=\int_{0}^{\infty} F(0, t) d t$ If $\mathcal{R}=1$, the walk is recurrent, and otherwise, it is transient.
Using $P(t) \simeq \frac{1}{(4 \pi t)^{d / 2}}$ as $t \rightarrow \infty$,
P3) Show that $F(t) \simeq \frac{1}{\sqrt{\pi}} \frac{1}{t^{3 / 2}}$ in $1 \mathrm{~d} ; F(t) \simeq \frac{4 \pi}{t(\ln t)^{2}}$ in 2 d ; and
$F(t) \simeq \frac{(1-\mathcal{R})^{2}}{8 \pi^{3 / 2}} \frac{1}{t^{3 / 2}}$ in 3 d . Find \mathcal{R} in 3 d .

Vicious random walks

When two random walks meet, they mutually annihilate. What is their survival prob.?
\rightarrow Consider two RWers starting from x_{1} and x_{2}. Their relative position is $y=x_{2}-x_{1}$ for $x_{2}>x_{1}$.

$$
c(y, t)=\frac{1}{\sqrt{8 \pi D t}}\left[e^{-\left(y-y_{0}\right)^{2} / 8 D t}-e^{-\left(y+y_{0}\right)^{2} / 8 D t}\right]
$$

P4) show that $F(t) \sim \frac{y_{0}}{\sqrt{8 \pi D t^{3}}} e^{-y_{0}^{2} / 8 D t} \sim t^{-3 / 2}$
The survival probability $S(t)=1-\frac{2}{\sqrt{\pi}} \int_{y_{0} / \sqrt{8 D t}}^{\infty} e^{-u^{2}} d u \rightarrow \frac{y_{0}}{\sqrt{2 \pi D t}}$

Gaussian model: a spin model of RWs

$$
-\beta H=\beta \sum_{<i, j>} W_{i, j} \phi_{i} \phi_{j}+\sum_{i} h_{i} \phi_{i},
$$

ϕ_{i} is a spin continuous variable at site i in the range $[-\infty, \infty]$ with weight $e^{-\phi_{i}^{2}}$. The partition function is given as

$$
\begin{aligned}
Z & =\int[d \phi] e^{-\sum_{i} \phi_{i}^{2}+\beta \sum_{<i j>} W_{i j} \phi_{i} \phi_{j}+\sum_{i} h_{i} \phi_{i}} \\
& =\Pi_{l}\left[\frac{\pi}{1-\beta \lambda_{l}}\right]^{\frac{1}{2}} \exp \left[\left(\sum_{i} h_{i} a_{i l}\right)^{2} / 4\left(1-\beta \lambda_{l}\right)\right]
\end{aligned}
$$

Internal energy: With $h_{i}=0$,

$$
\begin{aligned}
u & =-\frac{1}{N} \frac{\partial}{\partial \beta}(\ln Z)= \\
& =\frac{1}{2 \beta}\left(1-\frac{1}{N} \sum_{i} \frac{1}{I-\beta W}\right)_{i i}
\end{aligned}
$$

because $\sum_{j} W_{i, j}=1, a_{i, 0}=\frac{1}{\sqrt{N}}$ and $\lambda_{0}=1 . \sum_{l} a_{i l} a_{j l}=\delta_{i, j}$

$$
\begin{gathered}
u \sim\left(1-\frac{\beta}{\beta_{c}}\right)^{1-\alpha_{g}} \Leftrightarrow \mathcal{P}_{o}(s) \sim(1-s)^{\frac{d_{s}}{2}-1} \\
1-\alpha_{g}=\frac{d_{s}}{2}-1 \Rightarrow 2-\alpha_{g}=\frac{d_{s}}{2}=\frac{d_{f}}{d_{w}}=d_{f} \nu_{g}
\end{gathered}
$$

Correlation function

$$
\begin{aligned}
\Gamma_{i j}=\frac{\partial^{2} \ln Z}{\partial h_{i} \partial h_{j}} & =\left\langle\phi_{i} \phi_{j}\right\rangle-\left\langle\phi_{i}\right\rangle\left\langle\phi_{j}\right\rangle \\
& =\frac{1}{2} \sum_{l} \frac{a_{i l} a_{j l}}{1-\beta \lambda_{l}}=\frac{1}{2}\left(\frac{1}{I-\beta W}\right)_{i, j} \Leftrightarrow \mathcal{P}_{i \rightarrow j}(\beta)
\end{aligned}
$$

Susceptibility

$$
\chi=\frac{1}{N} \sum_{i, j} \Gamma_{i, j}=\frac{1}{2 N} \sum_{i, j, l} \frac{a_{i l} a_{j l}}{1-\beta \lambda_{l}}=
$$

because $\sum_{j} W_{i, j}=1, a_{i, 0}=\frac{1}{\sqrt{N}}$ and $\lambda_{0}=1 . \sum_{l} a_{i l} a_{j l}=\delta_{i, j} \gamma_{g}=1$

Correlation length

$$
\xi^{2}=\sum_{i j} R_{i j}^{2} \Gamma_{i j} / \sum_{i j} \Gamma_{i j} .
$$

Mean distance $\left\langle R_{n}^{2}\right\rangle$, and its g-function $R^{2}(s)=\sum_{n=0}^{\infty}\left\langle R_{n}^{2}\right\rangle z^{n}$

$$
\begin{gathered}
R^{2}(s)=\xi^{2}(s) \chi(s) \sim(1-s)^{-2 \nu_{g}-\gamma_{g}} \sim(1-s)^{-2 \nu_{g}-1} \\
R_{n}^{2} \sim n^{2 \nu_{g}} \quad\left(\nu_{g}=1 / d_{w}\right)
\end{gathered}
$$

P5) Consider a Sierpinski gasket. i) Obtain the fractal dimension. Consider random walks on an infinite Sierpinski gasket. ii) Obtain the spectral dimension and random walk dimension.

Sierpinski Gasket and Self-avoiding walks

Self-avoiding walks

A model for solvent or polymer configuration. Non-markovian process.
$\Gamma_{i, j}(n)$ is the number of ways for a SAWer starting from site i to reach site j after n steps.

Its generating function: $\Gamma_{i, j}(s)=\sum_{s=0}^{\infty} \Gamma_{i, j}(n) s^{n}$
$N_{i}(n)$ is the number of ways for the SAWer to reach any site after n steps: $N_{i}(n)=\sum_{j} \Gamma_{i, j}(n)$
$N(n)=\frac{1}{N} \sum_{i} N_{i}(n)$ and $N(s)=\sum_{n} N(n) s^{n}$.
If $N(n) \sim n^{\gamma-1} \mu^{n}$, then $N(s) \sim(1-\mu s)^{-\gamma}$, where $\mu=1 / s_{c}$.
$\left\langle R^{2}(n)\right\rangle=\sum_{i, j} R_{i j}^{2} \Gamma_{i j} / \sum_{i, j} \Gamma_{i j} \sim n^{2 \nu}$.
R behaves as n in $1 \mathrm{~d}, n^{3 / 4}$ in $2 \mathrm{~d}, n^{0.59}$ in $3 \mathrm{~d}, \sim n^{1 / 2}(\ln n)^{1 / 8}$ and $n^{1 / 2}$ for $d>d_{c}=4$. Flory's formula is known as $\nu=\frac{3}{d+2}$.

Flory's formula

$$
\begin{aligned}
& \vec{r}=\vec{a}_{1}+\vec{a}_{2}+\cdots+\vec{a}_{N} \\
& \left\langle\vec{r}^{2}\right\rangle \equiv\left\langle\sum_{i, j} \vec{a}_{i} \cdot \vec{a}_{j}\right\rangle=N a^{2} \\
& \left(\left\langle\vec{r}^{2}\right\rangle \equiv r^{2} \text { and } N a^{2} \equiv R_{0}^{2}\right) \\
& p_{d}(r) \sim \frac{1}{N^{3 / 2}} e^{-\frac{3}{2} \frac{r^{2}}{N a^{2}}}
\end{aligned}
$$

Free energy:

$$
F_{\text {elastic }}=E-T S=F(0)+\frac{3}{2} \frac{T r^{2}}{R_{0}^{2}}
$$

- Let R is the linear size of a polymer chain of N monomers.
$-c_{\text {int }}=\frac{N}{R^{d}}$ is the density of monomers.
$-f_{\text {rep }}=\frac{1}{2} T v(T) c^{2}$ is the repulsive energy per volume among monomers (c is local density of monomers); $\left\langle c^{2}\right\rangle \sim c_{\text {int }}^{2}$
- Free energy by repulsion is $F_{r e p} \sim T v(T) c^{2} R^{d} \sim T v \frac{N^{2}}{R^{d}}$
- Total free energy divided by $T: v \frac{N^{2}}{R^{d}}+\frac{3}{2} \frac{R^{2}}{R_{0}^{2}}$
$-R_{F}^{d+2} \sim v a^{2} N^{3} \rightarrow R_{f} \sim N^{3 /(d+2)} \rightarrow \nu=3 /(d+2)$.

Self-avoiding loop

$P_{o}(n)$ is the probability to reach a neighbor of the starting position after n steps. $P_{o}(n)=2 \sum_{\langle i, j\rangle} \Gamma_{i, j}(n) / \sum_{i, j} \Gamma_{i, j}(n)$.
$L(n)$ is the number of self-avoiding loops comprised of n bonds.
$\frac{1}{N} \sum_{<i, j>} \Gamma_{i, j}(n)=(n+1) L(n+1)$
If $L(n)$ is scaled as $\sim n^{\alpha-3} \mu^{n}$, then $L(s)=\sum_{n=0}^{\infty} L(n) s^{n} \sim(1-\mu s)^{2-\alpha}$.
$P_{o}(n) \sim \frac{1}{n^{1-\alpha+\gamma}}$.

n-vector cubic model

$$
-\beta H=K_{1} \sum_{<i, j>} s_{i} \cdot s_{j}+K_{2} \sum_{<i, j>}\left(s_{i} \cdot s_{j}\right)^{2}
$$

$s_{i} \cdot s_{j}=n \delta\left(\alpha_{i}, \alpha_{j}\right) \sigma_{i} \sigma_{j}$
n is the dimension; α_{i} is the direction of spin $i\left(\alpha_{i}=1, \cdots, n\right)$; and $\sigma_{i}= \pm 1$ is an Ising spin at site i.
The partition function is

$$
\begin{aligned}
& Z=\underbrace{\frac{1}{(2 \pi)^{N}} \sum_{\left\{s_{i}\right\}} \prod_{<i j>} \underbrace{\exp \left[K_{1} \sum_{<i, j>} s_{i} \cdot s_{j}+K_{2} \sum_{<i, j>}\left(s_{i} \cdot s_{j}\right)^{2}\right]}_{1+\sinh n K_{1} e^{n^{2} K_{2}} \delta\left(\alpha_{i}, \alpha_{j}\right) \sigma_{i} \sigma_{j}+\left(e^{n^{2} K_{2}} \cosh n K_{1}-1\right) \delta\left(\alpha_{i}, \alpha_{j}\right)} . \underbrace{\operatorname{enc}}}_{\equiv \operatorname{Tr}} \\
& =\operatorname{Tr} \prod_{<i j>}\left[1+\tanh n K_{1} \delta\left(\alpha_{i}, \alpha_{j}\right) \sigma_{i} \sigma_{j}\right] \\
& =\operatorname{Tr} \prod_{<i j>}\left[1+v n \delta\left(\alpha_{i}, \alpha_{j}\right) \sigma_{i} \sigma_{j}\right] \quad \text { as } \quad n \rightarrow 0 \\
& =\operatorname{Tr} \prod_{<i j>}\left[1+v O_{i j}\right]=\sum_{G} v^{L} n^{C-N+L} \quad v \text { means a bond }
\end{aligned}
$$

$$
\begin{aligned}
Z= & \operatorname{Tr}\left(1+v O_{12}\right)\left(1+v O_{23}\right)\left(1+v O_{31}\right) \\
= & \operatorname{Tr}\left(1+3 v O_{12}+3 v^{2} O_{12} O_{23}+v^{3} O_{12} O_{23} O_{31}\right) \\
= & \sum_{\alpha_{1}=1}^{n} \sum_{\alpha_{2}=1}^{n} \sum_{\alpha_{3}=1}^{n} \sum_{\sigma_{1}=-1}^{\sigma_{1}=1} \sum_{\sigma_{2}=-1}^{\sigma_{2}=1} \sum_{\sigma_{3}=-1}^{\sigma_{3}=1} \\
& \left(1+3 v O_{12}+3 v^{2} O_{12} O_{23}+v^{3} O_{12} O_{23} O_{31}\right)
\end{aligned}
$$

n-vector cubic model

where G is graph, C is the number of clusters, L is the number of bonds, $S \equiv C-N+L$ is the cyclomatic number.
$L(\ell)$ is the number of loops of length ℓ

$$
\begin{aligned}
Z & =1+n \sum_{\ell=0}^{\infty} N L(\ell) v^{\ell}+O\left(n^{2}\right) \\
-f & =\lim _{N \rightarrow \infty} \frac{1}{n N} \ln Z=\underbrace{\sum_{\ell=0}^{\infty} L(\ell) v^{\ell}}_{\text {the generating function of SA loop }}+O(n)
\end{aligned}
$$

P5') Consider a Sierpinski gasket. i) Obtain the fractal dimension. Consider random walks on an infinite Sierpinski gasket. ii) Obtain the spectral dimension and self-avoiding walk dimension ν.
Note: P5 과 P5' 중 하나 선택

Other random walks

i) Levy flight random walks (J-H Jeon)
ii) RWs with waiting times
iii) RWs in a random potential: Sinai's diffusion (J-H Jeon)
iv) RWs on complex networks (D.S. Lee)
vi) RWs on simplicial complexes. (Later)

Contents

(1) Overview

(2) References
(3) Diffusion, Random Walks on fractal structure

- Random walks
- Gaussian model
- Self-avoiding walks and n-vector cubic model
(4) Kinectics of reaction process
- Single-species annihilation/coalescence
- Two-species annihilation
- Two-species annihilation on fractal structure
- Two species annihilation on SF networks
(5) Aggregation

Kinetics of reaction process

Single-species annihilation/coalescence
Two types of reactions:
i) Annihilation reaction: $A+A \xrightarrow{K} \phi$
ii) Coalescence reaction: $A+A \xrightarrow{K} A$
$\rho(t)$ is the density of A particles.
Assume that the reactants are perfectly mixed at all times and thus the density at every site is always the same.
i) $\frac{d \rho}{d t}=-2 K \rho^{2} \Rightarrow \rho(t)=$

The true asymptotic behavior by the simulation that particles diffuse in the system and disappear when they meet.

$$
\text { But, } \quad \rho(t) \sim \begin{cases}, & d=1 \\ , & d=2 \\ , & d>2\end{cases}
$$

So there exists a critical dimension $d_{c}=2$. So there exists something more,

Heuristic arguments

For the reaction $A+A \rightarrow \phi$, in a time interval t, each particle explores the region $\ell \sim \sqrt{D t}$ in $1 d$. the typical separation between surviving particles is of the order of ℓ. $\Rightarrow \rho(t) \sim \ell^{-1} \sim(D t)^{-1 / 2}$.
More generally, the number of distinct sites \mathcal{N} visited by a random walk after n steps

$$
\mathcal{N} \sim \begin{cases}n^{1 / 2}, & d=1 \\ n / \ln n, & d=2 \\ n, & d>2\end{cases}
$$

Thus, it seems that $\rho(t) \sim n^{-1}$.

Two-species annihilation

electron-hole recombination, etc
$A+B \rightarrow \phi$ (when the densities of two species of particles are even)

$$
\rho(t) \sim \begin{cases} & d \leq 4 \\ t^{-1}, & d>4\end{cases}
$$

So the critical dimension is $d_{c}=4$. There is no logarithmic correction for $d=d_{c}$.
Heuristic argument
In a spatial region of linear size ℓ, the initial number of A particles is

$$
N_{A}=\rho_{0} \ell^{d} \pm \sqrt{\rho_{0} \ell^{d}} \quad \text { and } \quad N_{B}=\rho_{0} \ell^{d} \pm \sqrt{\rho_{0} \ell^{d}}
$$

$N_{A}-N_{B}= \pm \sqrt{\rho_{0} \ell^{d}}$. One of the species with population $\sqrt{\rho_{0} \ell^{d}}$ survive within the region of linear size ℓ. Thus the local density becomes $\rho \sim \sqrt{\rho_{0} \ell^{d}} / \ell^{d}$. Because, $\ell \sim \sqrt{D t}$,

$$
\rho(t) \sim \sqrt{\rho_{0}}(D t)^{-d / 4} \quad \text { and } \quad \frac{d \rho}{d t} \sim D \sqrt{\rho_{0}}(D t)^{-d / 4-1}
$$

Three scales

i) the average distance between neighboring particles $\ell_{A A} \sim \rho^{-1 / d} \sim \rho_{0}^{-1 / 2} t^{d / 4}$.
ii) Domain linear size: t 시간 동안 입자들은 L 만큼 영역 내에서 random walks 를 하므로 그 영역 내에서 $A+B \rightarrow 0$ 의 reaction 이 일어 날 것이고 그 중 majority 가 살아 남아 domain 을 만들 것이다. 그러므로 domain size 는 $L \sim \sqrt{D t}$ 이 됨.
iii) The distance between two particles of different species, $\ell_{A B}$.

1-i) For 1 d , a typical AB pair reacts in a time $\Delta t \sim \ell_{A B}^{2} / D$.
1-ii) The number of reactions per unit length per domain:
$\Delta \rho \sim O(1 / L) \sim O(1 / \sqrt{D t})$, where L is domain size.
1-iii) $\Delta \rho / \Delta t \sim-(D t)^{-1 / 2} /\left(\ell_{A B}^{2} / D\right)$.
1 -iv) Thus, $\ell_{A B} \sim[\rho(0)]^{-1 / 4}(D t)^{3 / 8}$.

2-i) For 2d, a typical AB pair reacts in a time $\Delta t \sim \ell_{A B}^{2} / D$.
2-ii) The number of reactions per unit length per domain: $\Delta \rho$ is of the order of $\left[(D t)^{1 / 2} / \ell_{A B}\right] /(\sqrt{D t})^{2}$, where L is domain size.
2-iii) $\Delta \rho / \Delta t \sim \frac{\left[(D t)^{1 / 2} / \ell_{A B}\right] /(\sqrt{D t})^{2}}{\ell_{A B}^{2} / D}$.
2-iv) Thus, $\ell_{A B} \sim[\rho(0)]^{-1 / 6}(D t)^{1 / 3}$.
For $d=3$, random walks are transient, so $\ell_{A B}=\ell_{A A} \sim t^{1 / 4}$.

Two-species annihilation on fractal structure

Heuristic argument

$$
\begin{aligned}
& A+B \rightarrow \phi \\
& \rho(t) \sim \begin{cases}t^{-d_{s} / 4}, & d_{s} \leq 4 \\
t^{-1}, & d_{s}>4\end{cases}
\end{aligned}
$$

So the critical dimension is $d_{s, c}=4$.
There is no logarithmic correction for $d_{s}=d_{c}$.

In a spatial region of linear size ℓ, the initial number of A particles is

$$
N_{A}=\rho_{0} \ell^{d_{f}} \pm \sqrt{\rho_{0} \ell^{d_{f}}} \quad \text { and } \quad N_{B}=\rho_{0} \ell^{d_{f}} \pm \sqrt{\rho_{0} \ell^{d_{f}}}
$$

$N_{A}-N_{B}= \pm \sqrt{\rho_{0} \ell^{d_{f}}}$. One of the species with population $\sqrt{\rho_{0} \ell^{d_{f}}}$ survive within the region of linear size ℓ. Thus the local density becomes $\rho \sim \sqrt{\rho_{0} \ell^{d_{f}}} / \ell^{d_{f}}$. Because, $\ell \sim(D t)^{1 / d_{w}}$,

$$
\rho(t) \sim \sqrt{\rho_{0}}(D t)^{-d_{s} / 4} \quad \text { and } \quad \frac{d \rho}{d t} \sim D \sqrt{\rho_{0}}(D t)^{-d_{s} / 4-1}
$$

Three scales on fractal structure

Challenging project 1)
Determine $\ell_{A A}, \ell_{A B}$, and Domain size L in terms of d_{f} and d_{S}.

Two species annihilation on SF networks

$A+B \rightarrow 0$ on fractal SF networks (Yun, et al., NJP (2009))
A fractal SF network is constructed: At each branching step, a node creates its m branches with probability $p_{m} \sim m^{-\gamma}$ with $\langle m\rangle=1$.

$$
\begin{gathered}
d_{f}=\left\{\begin{array}{ll}
\frac{\gamma-1}{\gamma-2}, & \text { for } 2<\gamma<3, \\
2, & \text { for } \gamma>3
\end{array} \quad d_{s}= \begin{cases}\frac{2(\gamma-1)}{2 \gamma-3}, & \text { for } 2<\gamma<3, \\
\frac{4}{3}, & \text { for } \gamma>3\end{cases} \right. \\
d_{w}=\frac{2 d_{f}}{d_{s}}
\end{gathered}
$$

i) $\frac{1}{\rho(t)}-\frac{1}{\rho(t)} \sim t^{d_{s} / 4}$
ii) The linear size of a domain $L \sim t^{1 / d_{w}}$.
iii) $\ell_{A A} \sim \rho(t)^{-1 / d_{f}} \sim t^{1 /\left(2 d_{w}\right)}$.
iv) $N_{A A} \sim\left(1 / \ell_{A A}^{d_{f}}\right) \rho(t) \sim t^{-d_{s} / 2}$ and $N_{A B} \propto d \rho / d t \sim t^{-d_{s} / 4-1}$

Other reactions

i) For $A_{1}+A_{2}+\cdots+A_{N} \rightarrow \phi$, when the densities of each species are even, $\rightarrow \rho(t) \sim t^{-d / 4}$ independent of N for $d<d_{c}=4 /(N-1)$, but for $d>d_{c}, \rho(t) \sim t^{-1 /(N-1)}$
ii) For $N A \rightarrow \phi$, under the same condition of i), $\rho(t) \sim t^{-d / 2}$ for $d<d_{c}=2 /(N-1)$, but $\rho(t) \sim t^{-1 /(N-1)}$ for $d>d_{c}$
iii) $A_{i}+A_{j} \xrightarrow{K_{i j}} A_{i \pm 1}+A_{j \mp 1}$ solvable.

P6) Show i) and ii)

Contents

(1) Overview

- References
(3) Diffusion, Random Walks on fractal structure
- Random walks
- Gaussian model
- Self-avoiding walks and n-vector cubic model
(9) Kinectics of reaction process
- Single-species annihilation/coalescence
- Two-species annihilation
- Two-species annihilation on fractal structure
- Two species annihilation on SF networks
(5) Aggregation

Aggregation
 An example

Diffusion limited cluster aggregation

Order parameter
$m(t)=\frac{S_{g}(t)}{N}$
Mean cluster size
$\langle s\rangle$
Correlation length
ξ

Aggregation of grease spots in a frypan

Aggregation

An example

Aggregation

Blood coagulation, milk curdling, star formation, etc.

$$
A_{i}+A_{j} \xrightarrow{K_{i j}} A_{i+j}
$$

The master equation (Smoluchowski equation for $K_{i j}=1$) under the conditions: Spatial homogeneity, Bimolecular reactions (ignoring higher-body interactions), and then shape independence. $c_{k}(t)=N_{k}(t) / N$

$$
\frac{d c_{k}}{d t}=\frac{1}{2} \sum_{i+j=k} K_{i j} c_{i} c_{j}-c_{k} \sum K_{i k} c_{i}
$$

$\Rightarrow M_{1}(t) \equiv \sum_{k=1} k c_{k}(t)=1$ is conserved. That is, $\frac{d M_{1}}{d t}=0$

i) Kernel of Brownian motion

$K_{i j} \sim\left(D_{i}+D_{j}\right)\left(R_{i}+R_{j}\right):$
D_{i} is diffusion constant $D_{i} \propto 1 / R_{i}$ (Stoke-Einstein relation), where R_{i} is radius of a cluster of size i. Clusters are regarded as spheres. So contact is made in 1 d way. $R_{i} \sim i^{1 / 3}$ in 3 d .
$K_{i j} \sim\left(i^{-1 / 3}+j^{-1 / 3}\right)\left(i^{1 / 3}+j^{1 / 3}\right) \sim 2+\left(\frac{i}{j}\right)^{1 / 3}+\left(\frac{j}{i}\right)^{1 / 3}$
This kernel is not constant. But it satisfies the scaling behavior $K_{i, j}=K_{a i, a j}$. Thus, $K_{i j}=2$ is considered.

$$
\dot{c}_{k}=\sum_{i+j=k} c_{i} c_{j}-2 c_{k} \underbrace{\sum_{i=1} c_{i}}_{M_{0}(t)}
$$

with an initial condition $c_{k}(0)=\delta_{k, 1}$.
i) Kernel of Brownian motion $K_{i j}=2$

Moments

Define the moment of the mass distribution $M_{n}(t) \equiv \sum_{k=1} k^{n} c_{k}(t)$.

$$
\begin{array}{lr}
\dot{M}_{n}=\sum_{i, j}(i+j)^{n} c_{i} c_{j}-2 M_{n} M_{0} & \\
\dot{M}_{0}=-M_{0}^{2} & M_{0}=1 /(1+t) \\
\dot{M}_{1}=0 & M_{1}=1 \\
\dot{M}_{2}=2 M_{1}^{2} & M_{2}=1+2 t \\
\dot{M}_{3}=6 M_{1} M_{2} & M_{3}=1+6 t+6 t^{2} \\
& M_{n} \simeq n!t^{n-1}
\end{array}
$$

i) Kernel of Brownian motion $K_{i j}=2$
cluster size distribution: Exponential ansatz

Suppose $c_{k}(t)=A(t) a(t)^{k-1}$

$$
\dot{c}_{k}=\sum_{i+j=k} c_{i} c_{j}-2 c_{k}
$$

This equation must be held for any k. So $\dot{A}=-\frac{2 A^{2}}{1-a}, \dot{a}=A$.
We use $\sum_{k} k c_{k}=1$ to get $A=(1-a)^{2}$. Then $a=\frac{t}{1+t}$ and $A=\frac{1}{(1+t)^{2}}$
$\rightarrow c_{k}(t)=\frac{t^{k-1}}{(1+t)^{k+1}}$
i) Kernel of Brownian motion $\quad K_{i j}=2$

Generating function method
$g(z, t)=\sum_{k=1} c_{k}(t) z^{k}$

$$
\begin{aligned}
\frac{d g}{d t} & =\sum_{k=1} \sum_{i+j=k} c_{i} z^{i} c_{j} z^{j}-2 \sum_{k=1} c_{k} z^{k} \sum_{i} c_{i}=g^{2}-2 g M_{0} \\
& =g^{2}-2 g M_{0}+M_{0}^{2}-M_{0}^{2} \\
\frac{d\left(g-M_{0}\right)}{d t} & =g^{2}-2 g M_{0}+M_{0}^{2}=\left(g-M_{0}\right)^{2} \\
g & =\frac{1}{1+t} \frac{z}{1-(z-1) t}=\sum_{k} z^{k} \frac{t^{k-1}}{(1+t)^{k+1}} \\
c_{k}(t) & =\frac{t^{k-1}}{(1+t)^{k+1}}
\end{aligned}
$$

P7) Suppose that the cluster size dist. at $t=0$ is given by $c_{k}(0)=b k^{-\gamma}$, where $2<\gamma<3$. Solve the generating function $g(z, t)$ and $c_{k}(t)$.
ii) Gelation $K_{i j}=i j$

A monomer has three branches (reactive endgroups). Then two monomers are merged and produce a dimer with four branches. When one monomer and one dimer are merged, a trimer has five branches. Generally, k-mer has $(f-2) k+2$ branches, where f is the number of branches of a monomer.
$K_{i j}=[(f-2) i+2][(f-2) j+2]=(f-2)^{2} i j+2(f-2)(i+j)+4$

$$
\dot{c}_{k}=\frac{1}{2} \sum_{i+j=k} i j c_{i} c_{j}-k c_{k} \overbrace{\sum_{i=1}^{=1} i c_{i}}^{=1}
$$

Moments : Gelation (giant cluster of infinite size)
Sol-Gel transition. Suppose a system of N monomers. As time passes, two clusters are merged and generate a bigger cluster. This process is repeated. At a certain time step, a cluster of size $m N$ of $O(1)$ emerges, called a Gel.
"Mass" means size of a cluster. Consider the moments of the mass distribution c_{k}. For $t<1$,

$$
\begin{aligned}
\frac{d M_{2}}{d t} & =\sum_{k=1} k^{2} \frac{d c_{k}}{d t}=\frac{1}{2} \sum_{i=1} \sum_{j=1}(i+j)^{2}\left(i c_{i}\right)\left(j c_{j}\right)-\sum_{k=1} k^{3} c_{k} \\
& =\sum_{i} \sum_{j}\left(i^{2} c_{i}\right)\left(j^{2} c_{j}\right)=M_{2}^{2} \quad \rightarrow \quad M_{2}(t)=\frac{M_{2}(0)}{1-M_{2}(0) t} \\
\frac{d M_{3}}{d t} & =3 M_{3} M_{2} \quad \rightarrow \quad M_{3}(t)=\frac{M_{3}(0)}{\left(1-M_{2}(0) t\right)^{3}} \\
\frac{d M_{4}}{d t} & =4 M_{4} M_{2}+3 M_{3}^{2}
\end{aligned}
$$

Moments for $t>1$

$$
\begin{aligned}
& M_{n}(t)=\sum_{k} k^{n} c_{k}=\sum_{\text {sol }} k^{n} c_{k}+\left(k^{n} c_{k}\right)_{\mathrm{gel}} \\
& M_{0}(t)=\sum_{\text {sol }} c_{k} \\
& M_{1}(t)=\sum_{\text {sol }} k c_{k}+m \\
& M_{2}(t)=\sum_{\text {sol }} k^{2} c_{k}+m^{2} N \\
& M_{3}(t)=\sum_{\text {sol }} k c_{k}+m^{3} N^{2}
\end{aligned}
$$

Generating function approach

$$
\begin{aligned}
& g(y, t) \equiv \sum_{k} k c_{k}(t) e^{y k} \\
& \begin{aligned}
& \frac{\partial g(y, t)}{\partial t}=\frac{1}{2} \sum_{i=1} \sum_{j=1}(i+j) i j c_{i} c_{j} e^{y k}-\sum_{k=1} k^{2} c_{k} e^{y k} \\
&=\frac{1}{2} \sum_{i=1} i^{2} c_{i} e^{y i} \sum_{j=1} j c_{j} e^{y j}+\frac{1}{2} \sum_{i=1} i c_{i} e^{y i} \sum_{j=1} j^{2} c_{j} e^{y j} \\
&-\sum_{k=1} k^{2} c_{k} e^{y k} \\
&=(g-1) \frac{\partial g}{\partial y} \\
& \frac{\frac{d g}{d t}=\frac{\partial g}{\partial t}+(1-\mathcal{E}) \frac{\partial g}{\partial y}=0}{\frac{d g}{d t}=\frac{\partial g}{\partial t}+\frac{d y}{d t} \frac{\partial g}{\partial y}=0}
\end{aligned}
\end{aligned}
$$

To solve this first-order PDE, one may need to find a quantity along which $g(y, t)$ remains constant. $d g / d t=0$.
As usual, we take $\frac{d y}{d t}=1-g$ as an invariant quantity over time.
$y=(1-g) t+f(g) . f(g)$ is determined from the initial condition.
$g=\sum_{k} k c_{k}(t) e^{y k} \xrightarrow{t=0} e^{y}$.
So $y=(1-g) t+\ln g \rightarrow g e^{-g t}=e^{y-t}$
Set $Y=g t$ and $X=t e^{y-t}$ and then $X=Y e^{-Y}$
Given a function $X=f(Y)$ with $X \simeq Y$ for small Y, What is $Y(X)=\sum_{n=1} A_{n} X^{n}$?
Using Lagrange inversion formula $A_{N}=\frac{n^{n-1}}{n!}$

$$
g(y, t)=\sum_{k} \frac{k^{k-1}}{k!} t^{k-1} e^{-k t} e^{y k} \Rightarrow c_{k}(t)=\frac{k^{k-2}}{k!} t^{k-1} e^{-k t}
$$

$c_{k}(t)=\frac{k^{k-2}}{k!} t^{k-1} e^{-k t} \xrightarrow{t \rightarrow 1^{-}} \frac{e^{-k(1-t)^{2} / 2}}{\sqrt{2 \pi} k^{5 / 2}} \simeq s^{-5 / 2} \Phi(k / s)$ for $t \leq 1$ with $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \frac{e^{-x / 2}}{x^{5 / 2}}$ and $s=(1-t)^{-2}$.

The stirling's formula: $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$
For $t>1$, the fraction of nodes in the giant cluster:
$m=1-M_{1}=1-g(y=0, t) \equiv 1-g_{0}(t)$.
Using the relation $g_{0}=e^{-\left(1-g_{0}\right) t}, 1-m=e^{-m t}$.
To solve g near $t=1^{+}$, let $t=1+\delta . \Rightarrow m=2 \delta=2(t-1)+\cdots$.

$$
m(t)=1-\sum_{k} k c_{k}(t)=\frac{2 M_{2}^{2}(0)}{M_{3}(0)}\left(M_{2}(0) t-1\right)
$$

$M_{2}(t)$ for $t>t_{c}$

$$
\begin{aligned}
& \frac{d M_{2}(t)}{d t}=\frac{1}{2} \sum_{i} \sum_{j}(i+j)^{2} i j c_{i} c_{j}-\sum_{k} k^{3} c_{k} \\
& =\sum_{i} \sum_{j} i^{2} c_{i} j^{2} c_{j}+\sum_{i} i^{3} c_{i} \underbrace{\sum_{j} j c_{j}}_{\neq 1}-\sum_{k} k^{3} c_{k} \\
& =M_{2}^{2}-m M_{3} \\
& M_{n}=\left.\frac{\partial^{n-1} g}{\partial y^{n-1}}\right|_{y=0} \\
& M_{2}(t)=\sum_{k} k^{2} c_{k}(t)= \begin{cases}(1-t)^{-1}, & \text { for } t<1, \\
\left(e^{m t}-t\right)^{-1}, & \text { for } t>1 .\end{cases}
\end{aligned}
$$

Lagrange inversion formula:

Given a function $X=f(Y)$ with $X \simeq Y$ for small Y,
What is $Y(X)=\sum_{n=1} A_{n} X^{n}$?

$$
\begin{aligned}
A_{n} & =\frac{1}{2 \pi i} \oint \frac{Y}{X^{n+1}} d X=\frac{1}{2 \pi i} \oint \frac{Y}{X^{n+1}} \frac{d X}{d Y} d Y \\
& =\frac{1}{2 \pi i} \oint \frac{Y}{f(Y)^{n+1}} f^{\prime}(x) d Y \\
& =\frac{1}{2 \pi i} \oint \frac{Y}{\left(Y e^{-Y}\right)^{n+1}}(1-Y) e^{-Y} d Y=\frac{1}{2 \pi i} \oint \frac{1-Y}{Y^{n}} e^{n Y} d Y \\
& =\frac{1}{2 \pi i} \oint \sum_{k=0} \frac{n^{k}}{k!}\left(Y^{k-n}-Y^{k+1-n}\right) d Y=\frac{n^{n-1}}{n!}
\end{aligned}
$$

Loops (cycles)

E. Ben-Naim and P.L. Krapivsky, PRE 71, 026129 (2005)

Model ER model

- $\exists N$ nodes. Links are generated with rate $1 /(2 N)$
- self-loop and multiple links are allowed
- the average number of links: $L=\frac{N^{2} t}{2 N}=\frac{N t}{2}$
- the average number of self-loops $C=\frac{N t}{2 N}=\frac{t}{2}$
- mean degree t, transition point $t_{c}=1$
- cluster size dist at $t_{c}: c_{k} \sim k^{-5 / 2}(\tau=5 / 2)$
- $N \sum_{k=k_{m}}^{\infty} c_{k} \sim 1 \rightarrow k_{m} \sim N^{2 / 3}$ (Giant cluster size).

Tree

- $q_{\ell}(t)$ is the density of distinct paths of length ℓ at time t

$$
\frac{d q_{\ell}}{d t}=\sum_{n+m=\ell-1} q_{n} q_{m}, \quad \text { with } \quad q_{0}(t)=1
$$

- $q_{\ell}(0)=\delta_{\ell, 0}$, then $q_{0}(t)=1, q_{1}(t)=t, q_{2}(t)=t^{2}, \ldots q_{\ell}(t)=t^{\ell}$

Path length

Path length density in finite systems

- $p_{\ell, k}$ is the density of distinct paths of length ℓ in components of size k

$$
\frac{d p_{\ell, k}}{d t}=\sum_{\substack{i+j=k, n+m=\ell-1}} p_{n, i} p_{m, j}+\sum_{i+j=k} i p_{\ell, i} j c_{j}-k p_{\ell, k}
$$

- $p_{\ell, k}=(\ell+1) \frac{k^{k-\ell-2}}{(k-\ell-1)!} t^{k-1} e^{-k t}$ for $t<t_{c}=1$
- the characteristic length $\ell_{c} \sim(1-t)^{-1} \rightarrow \sigma_{\ell}=1$
- $p_{\ell, k}=\ell\left(2 \pi k^{3}\right)^{-1 / 2} \exp \left(-\ell^{2} / 2 k\right)$ at $t=t_{c} . \ell \sim \sqrt{k} \sim N^{1 / 3}$

Cycles

- w_{ℓ} is the density of cicles of size ℓ at time t.
- $\frac{d w_{\ell}}{d t}=\frac{N q_{\ell-1}}{2 N}=\frac{t^{\ell-1}}{2}, \rightarrow w_{\ell}=\frac{t^{\ell}}{2 \ell} \rightarrow w_{\ell}=\frac{1}{2 \ell}$ at $t_{c}=1$.

Cycles in finite systems

- $u_{\ell, k}(t)$ is the average number of unicyclic of length ℓ contained in the components of size k at time t.

$$
\frac{d u_{\ell, k}}{d t}=\frac{1}{2} p_{\ell-1, k}+\sum_{i+j=k} i u_{\ell, i} j c_{j}-k u_{\ell, k} \quad \text { with } \quad u_{\ell, k}(0)=0
$$

- $u_{\ell, k}(t) \simeq\left(8 \pi k^{3}\right)^{-1 / 2} t^{k} e^{k(1-t)} e^{-\ell^{2} / 2 k}$
- $u_{\ell, k}(t) \simeq \ell^{-3} \Phi_{u}\left(k(1-t)^{2}, \ell(1-t)\right)$ near $t \rightarrow t_{c}^{-}$
- $\gamma=1$

Other Kernels

i) when $K_{i j} \sim i+j: c_{k}\left(t_{c}\right) \sim k^{-2}$ but as $t_{c} \rightarrow \infty$.
ii) when $K_{i j} \sim(i j)^{\omega}: c_{k}\left(t_{c}\right) \sim k^{-\tau}$ with

$$
\tau=\left\{\begin{array}{lll}
\frac{3}{2}+\omega, & \text { for } \frac{1}{2}<\omega<1 & \text { at finite } t_{c} \\
1+2 \omega, & \text { for } 0<\omega<\frac{1}{2} & \text { at infinite } t_{c}
\end{array}\right.
$$

Refs: Ziff, et al., PRL 49, 593 (1982).
Cho et al., PRE 81, 030103(R) (2010).

Scaling theory

The scaling ansatz: Assume $c(s, t)=\frac{1}{s^{* 2}} f\left(\frac{s}{s^{*}}\right)$.
Because, $\int s c(s, t) d x=1$ is required. $M_{n}=\int s^{n} \frac{1}{s^{* 2}} f\left(\frac{s}{s^{*}}\right) d x \sim s^{*(n-1)}$
Assume that $K(a i, a j) \sim a^{\lambda} K(i, j)$,

$$
\frac{\partial c}{\partial t}=\frac{1}{2} \int_{0}^{x} d y K(y, x-y) c(y, t) c(x-y, t)-\int_{0}^{\infty} d y K(x, y) c(x, t) c(y, t)
$$

Plugging $c(s, t)=s^{*-2} f\left(s / s^{*}\right)$ into the Smol. Eq.
LHS $\rightarrow \frac{\partial c}{\partial t}=-\frac{\dot{s}^{*}}{s^{* 3}}\left[2 f(u)+u f^{\prime}(u)\right] u=x / s^{*}$.
RHS $\rightarrow s^{*(\lambda-3)} \mathcal{K}(u)$ (with $\left.v=y / s\right)$

$$
\mathcal{K}(u)=\frac{1}{2} \int_{0}^{u} d v K(v, u-v) f(v) f(u-v)-\int_{0}^{\infty} d v K(u, v) f(u) f(v)
$$

$$
\begin{gathered}
\frac{\dot{s}^{*}(t)}{s^{* \lambda}(t)}=-\frac{\mathcal{K}(u)}{2 f(u)+u f^{\prime}(u)} \equiv \Lambda \\
s^{*}(t) \sim \begin{cases}t^{1 /(1-\lambda)} \equiv t^{z}, & \text { for } \lambda<1 \\
e^{\Lambda t}, & \text { for } \lambda=1 \\
\left(t_{g}-t\right)^{-1 /(\lambda-1)}, & \text { for } 1<\lambda \leq 2\end{cases}
\end{gathered}
$$

$2 f(u)+u f^{\prime}(u)+\Lambda^{-1} \mathcal{K}(u)=0 \Leftarrow$ the way to solve it is not developed yet.

Aggregation with input

constant kernel

At $t=0, c_{k}(0)=0$. At each time step, a monomer is added to the system.

$$
\begin{aligned}
& \frac{d c_{k}}{d t}=\sum_{i+j=k} c_{i} c_{j}-2 c_{k} \underbrace{\sum_{i} c_{i}}_{M_{0}}+\delta_{k, 1} \\
& M_{0}(t)=\tanh t .
\end{aligned}
$$

$\dot{M}_{0}=-M_{0}^{2}+1 \rightarrow M_{0}(t)=\tanh t$.
g-function $\mathcal{C}(z, t)=\sum_{k} c_{k}(t) z^{k}$.

$$
\frac{d \mathcal{C}(z, t)}{d t}=\mathcal{C}^{2}-2 \mathcal{C} M_{0}+z \rightarrow \frac{d \mathcal{C}-M_{0}}{d t}=\left(\mathcal{C}-M_{0}\right)^{2}+(z-1)
$$

$\mathcal{C}(z, t)=\tanh t-\sqrt{1-z} \tanh (t \sqrt{1-z})$.
As $t \rightarrow \infty, \mathcal{C}(z, t)=1-\sqrt{1-z} . \rightarrow c_{k} \simeq \frac{1}{\sqrt{4 \pi}} \frac{1}{k^{3 / 2}}$
Because $\sum k c_{k}(t)=1, \exists$ a cutoff k^{*} s.t. $\sum_{k=1}^{k^{*}} k c_{k}(t)=1$. So $k^{*} \sim t^{2}$.
For $k>k^{*}, c_{k}(t)=\frac{\pi^{2}}{4 t^{3}} e^{-\pi^{2} k / 4 t^{2}}$.

Aggregation with spatially localized input

$$
\frac{d c_{k}}{d t}=D \nabla^{2} c_{k}+\sum_{i+j=k} c_{i} c_{j}-2 c_{k} \sum_{i} c_{i}+J \delta_{k, 1} \delta(x)
$$

At $t=0, c_{k}(0)=0$. At each time step, a monomer is added to the system. $M_{1}=\sum_{k} k c_{k}$

$$
\frac{\partial M_{1}}{\partial t}=D \nabla^{2} M_{1}+J \delta(x)
$$

P8)

$$
M_{1}(t) \xrightarrow{t \rightarrow \infty} \begin{cases}? & \text { for } d=1 \\ ? & \text { for } d=2 \\ ? & \text { for } d=3\end{cases}
$$

Aggregation in Euclidean space Research papers by Meakin and Family Y.S.Cho and B.Kahng," Discontinuous percolations in real physical systems," Phys.Rev. E 84, 050102(R) (2011).

