K-HEP Workshop (Korean High Energy Physics Workshop)
October 07 (Sun), 2018 ~ October 12 (Fri), 2018


■ Program

     

    10/07

    Sunday

    10/08

    Monday

    10/09

    Tuesday

    10/10

    Wednesday

    10/11

    Thursday

    10/12

    Friday

     9:30 - 10:45

     

    Dong-min Gang

    Conformal field theory

    Dong-han Yeom

    Euclidean path

    integral approach and

    applications

    Jason Rong

    Bootstrap

    Min-Seok Seo

    Asymptotic symmetry and soft theorem

    Jaewon Song

    2d chiral algebra and

    4d N=2 SCFTs

     10:45 - 11:00

     

    Coffee Break

    Coffee Break

    Coffee Break

    Coffee Break

    Coffee Break

     11:00 - 12:15

     

     Dong-min Gang

    Conformal field theory

    Dong-han Yeom

    Euclidean path

    integral approach and

    applications 

    Jason Rong

    Bootstrap

    Min-Seok Seo

    Asymptotic symmetry

    and soft theorem

    Jaewon Song

    2d chiral algebra and

    4d N=2 SCFTs

     12:15 - 13:30

     

    Lunch

     Lunch

     Lunch

      Lunch

      Lunch

     13:30 - 14:45

     

    Dong-han Yeom

    Euclidean path

    integral approach and

    applications

    Dong-min Gang

    Conformal field theory

    Miok Park

    QFT on curved

    background

    Jason Rong

    Bootstrap

     

     14:45 - 15:00

     

    Coffee Break

    Coffee Break

    Coffee Break

    Coffee Break


     15:00 - 16:15

     Reception










    Dong-han Yeom

    Euclidean path

    integral approach and

    applications

    Dong-min Gang

    Conformal field theory

    Min-Seok Seo

    Asymptotic symmetry

    and soft theorem

    Jason Rong

    Bootstrap

     

     16:15 - 16:30

    Coffee Break

    Coffee Break

    Coffee Break

    Coffee Break


     16:30 - 17:45

    Discussion

    Discussion

    Min-Seok Seo

    Asymptotic symmetry

    and soft theorem

    Miok Park

    QFT on curved

    background

     

    17:45 -          

     

    Banquet

    (18:30 ~)

    Discussion

    Discussion

     



    Plans and references



    Conformal Field Theory (Dong-min Gang)




    Euclidean path integral approach and applications (Dong-han Yeom)


    Lecture 1: Why did Hawking investigate Euclidean analytic continuation?

    Refs:

    S. W. Hawking, "Particle creation by black holes", Commun.Math.Phys. 43 (1975) 199-220

    J. B. Hartle and S. W. Hawking, "Path integral derivation of black hole radiance", Phys.Rev. D13 (1976) 2188-2203


    Lecture 2: Entropy and topology of Euclidean black holes

    Refs:

    S. W. Hawking, "The nature of space and time", hep-th/9409195

    G. W. Gibbons and S. W. Hawking, "Action integrals and partition functions in quantum gravity", Phys.Rev. D15 (1977) 2752-2756

    J. M. Maldacena, "Eternal black holes in anti-de Sitter", JHEP 0304 (2003) 021

    S. W. Hawking, "Information loss in black holes", Phys.Rev. D72 (2005) 084013


    Lecture 3: Quantum cosmology: homogeneous analytic continuation

    Refs:

    J. B. Hartle and S. W. Hawking, "Wave function of the universe", Phys.Rev. D28 (1983) 2960-2975

    J. B. Hartle, S. W. Hawking and T. Hertog, "The classical universes of the no-boundary quantum state", Phys.Rev. D77 (2008) 123537


    Lecture 4: Quantum cosmology: inhomogeneous analytic continuation

    Refs:

    S. R. Coleman and F. DeLuccia, "Gravitational effects on and of vacuum decay", Phys.Rev. D21 (1980) 3305

    S. W. Hawking and N. Turok, "Open inflation without false vacua", Phys.Lett. B425 (1998) 25-32




    Bootstrap (Jason Rong)


    1. Introduction to bootstrap philosophy and numerical bootstrap


    2. Analytical bootstrap (Large spin perturbation theory)


    3. Caron-Huot’s Inversion formula


    Refs:

    1. D. Simmons-Duffin, “Tasi lecture on conformal bootstrap,” arXiv:1602.07982 

    2. L. F. Alday and A. Zhiboedov, “Conformal Bootstrap With Slightly Broken Higher Spin Symmetry,” JHEP 1606, 091 (2016) doi:10.1007/JHEP06(2016)091 [arXiv:1506.04659]

    3. L. F. Alday, “Large Spin Perturbation Theory for Conformal Field Theories,” Phys. Rev. Lett. 119, no. 11, 111601 (2017) doi:10.1103/PhysRevLett.119.111601 [arXiv:1611.01500]

    4. S. Caron-Huot, “Analyticity in Spin in Conformal Theories,” JHEP 1709, 078 (2017)




    QFT on curved background (Miok Park)




    Asymptotic symmetry and soft theorem (Min-Seok Seo)


    Refs:

    1. C. Itzykson, J.-B. Zuber, Quantum Field Theory, Sec. 1-3-2 and 4-1-2.

    2. S. Weinberg, The Quantum Theory of Fields, Vol. 1, Sec. 5.9 (See also Phys. Rev. 135 (1964) B1049: http://inspirehep.net/record/26325), Ch. 13.

    3. P. P. Kulish, L. D. Faddeev, Theor. Math. Phys. 4 (1970) 745 ( http://inspirehep.net/record/60986).

    4. A. Strominger, arXiv: 1703.05448 [hep-th] (http://inspirehep.net/record/1517745).

    5. Y. Hamada, M.-S. Seo, G. Shiu, JHEP 1802 (2018) 046 (http://inspirehep.net/record/1639247).

    6. S. Weinberg, Cosmology, Sec. 5.4 (See also Phys. Rev. D 67 (2003) 123504: https://inspirehep.net/record/613424).




    2d chiral algebra and 4d N=2 SCFTs (Jaewon Song)