Seminars & Lectures
* TITLE | Exact Spin Liquid Ground States of the Quantum Dimer Model on the Square and Honeycomb Lattices | ||||||
---|---|---|---|---|---|---|---|
* SPEAKERS | |||||||
|
|||||||
* HOST(Applicant) | |||||||
|
|||||||
* DATE / TIME | 2013-07-12, 4:30 ~ 6:30 PM | ||||||
* PLACE | Physics Seminar room (Science Bldg, 3-201) | ||||||
* ABSTRACT | |||||||
We study a generalized quantum hard-core dimer model on the square and honeycomb lattices, allowing for first and second neighbor dimers. At generalized Rokhsar-Kivelson points, the exact ground states can be constructed, and ground-state correlation functions can be equated to those of interacting (1+1)-dimensional Grassmann fields. When the concentration of second neighbor dimers is small, the ground-state correlations are shown to be short ranged corresponding to a (gaped) spin liquid phase. On a 2-torus, the ground states exhibit fourfold topological degeneracy. On a finite cylinder we have found a dramatic even-odd effect depending on the circumference and propose that this can be used as a numerical diagnostic of gapped spin-liquid phases, more generally. |